During the last decade, the number of applications of UAVs has continuously increased, making the global UAV market one of those with the highest rate of growth. The worldwide increasing usage of UAVs is causing an ever-growing demand for efficient solutions in order to make them usable in every kind of working condition. In fact, nowadays the main restriction to the usage of UAVs is probably the need of reliable position estimates provided by using the Global Navigation Satellite System (GNSS): since UAVs mostly rely on the integration of GNSS/Inertial Navigation System (INS) to properly fulfil their tasks, they face a major challenge while navigating in GNSS denied environments. The goal of this paper is that of investigating possible strategies to reduce such main restriction to UAV usage, i.e. enabling flights in GNSS denied environment by providing position estimates with accuracy quite comparable to that of standard GNSS receivers currently mounted on commercialized drones. To be more specific, this paper proposes the combined use of a novel Frequency Modulated Continuous Wave (FMCW) Radar, a set of Ultra-Wideband (UWB) devices, and Inertial Measurement Unit (IMU) measurements in order to compensate for the unavailability of the GNSS signal units. A 24-GHz micro FMCW radar and a UWB device have been attached to a quadcopter during the flight. The radar receives the reflections from ground scatterers, whereas the UWB system provides range measurements between a UWB rover mounted on the UAV and a set of UWB anchors distributed along the flying area.

Micro-radar and UWB aided UAV navigation in GNSS denied environment / Zahran S.; Mostafa M.M.; Masiero A.; Moussa A.M.; Vettore A.; El-Sheimy N.. - In: INTERNATIONAL ARCHIVES OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES. - ISSN 1682-1750. - ELETTRONICO. - 42:(2018), pp. 469-476. (Intervento presentato al convegno 2018 ISPRS Technical Commission I Midterm Symposium on Innovative Sensing - From Sensors to Methods and Applications tenutosi a deu nel 2018) [10.5194/isprs-archives-XLII-1-469-2018].

Micro-radar and UWB aided UAV navigation in GNSS denied environment

Masiero A.;
2018

Abstract

During the last decade, the number of applications of UAVs has continuously increased, making the global UAV market one of those with the highest rate of growth. The worldwide increasing usage of UAVs is causing an ever-growing demand for efficient solutions in order to make them usable in every kind of working condition. In fact, nowadays the main restriction to the usage of UAVs is probably the need of reliable position estimates provided by using the Global Navigation Satellite System (GNSS): since UAVs mostly rely on the integration of GNSS/Inertial Navigation System (INS) to properly fulfil their tasks, they face a major challenge while navigating in GNSS denied environments. The goal of this paper is that of investigating possible strategies to reduce such main restriction to UAV usage, i.e. enabling flights in GNSS denied environment by providing position estimates with accuracy quite comparable to that of standard GNSS receivers currently mounted on commercialized drones. To be more specific, this paper proposes the combined use of a novel Frequency Modulated Continuous Wave (FMCW) Radar, a set of Ultra-Wideband (UWB) devices, and Inertial Measurement Unit (IMU) measurements in order to compensate for the unavailability of the GNSS signal units. A 24-GHz micro FMCW radar and a UWB device have been attached to a quadcopter during the flight. The radar receives the reflections from ground scatterers, whereas the UWB system provides range measurements between a UWB rover mounted on the UAV and a set of UWB anchors distributed along the flying area.
2018
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
2018 ISPRS Technical Commission I Midterm Symposium on Innovative Sensing - From Sensors to Methods and Applications
deu
2018
Zahran S.; Mostafa M.M.; Masiero A.; Moussa A.M.; Vettore A.; El-Sheimy N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1253267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact