We study power concavity of rotationally symmetric solutions to elliptic and parabolic boundary value problems on rotationally symmetric domains in Riemannian manifolds. As applications of our results to the hyperbolic space H^N, we have: 1. The first (positive) Dirichlet eigenfunction of the Laplacian on a ball in H^N raised to some power α > 0 is strictly concave. 2. Let L be the heat kernel on H^N. Then L(⋅,y,t) is strictly log-concave in H^N for y H^N and t > 0.
Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains / Ishige K.; Salani P.; Takatsu A.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 24:(2022), pp. 2150097.0-2150097.0. [10.1142/S0219199721500978]
Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains
Ishige K.;Salani P.;Takatsu A.
2022
Abstract
We study power concavity of rotationally symmetric solutions to elliptic and parabolic boundary value problems on rotationally symmetric domains in Riemannian manifolds. As applications of our results to the hyperbolic space H^N, we have: 1. The first (positive) Dirichlet eigenfunction of the Laplacian on a ball in H^N raised to some power α > 0 is strictly concave. 2. Let L be the heat kernel on H^N. Then L(⋅,y,t) is strictly log-concave in H^N for y H^N and t > 0.File | Dimensione | Formato | |
---|---|---|---|
2002.10141.pdf
accesso aperto
Descrizione: Preprint dell'autore
Tipologia:
Altro
Licenza:
Open Access
Dimensione
253.98 kB
Formato
Adobe PDF
|
253.98 kB | Adobe PDF | |
PubblicatoOnline.pdf
Accesso chiuso
Descrizione: pdf editoriale pubblicato online
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
438.68 kB
Formato
Adobe PDF
|
438.68 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.