We study power concavity of rotationally symmetric solutions to elliptic and parabolic boundary value problems on rotationally symmetric domains in Riemannian manifolds. As applications of our results to the hyperbolic space H^N, we have: 1. The first (positive) Dirichlet eigenfunction of the Laplacian on a ball in H^N raised to some power α > 0 is strictly concave. 2. Let L be the heat kernel on H^N. Then L(⋅,y,t) is strictly log-concave in H^N for y H^N and t > 0.

Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains / Ishige K.; Salani P.; Takatsu A.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 24:(2022), pp. 2150097.0-2150097.0. [10.1142/S0219199721500978]

Power concavity for elliptic and parabolic boundary value problems on rotationally symmetric domains

Ishige K.;Salani P.;Takatsu A.
2022

Abstract

We study power concavity of rotationally symmetric solutions to elliptic and parabolic boundary value problems on rotationally symmetric domains in Riemannian manifolds. As applications of our results to the hyperbolic space H^N, we have: 1. The first (positive) Dirichlet eigenfunction of the Laplacian on a ball in H^N raised to some power α > 0 is strictly concave. 2. Let L be the heat kernel on H^N. Then L(⋅,y,t) is strictly log-concave in H^N for y H^N and t > 0.
2022
24
0
0
Goal 17: Partnerships for the goals
Ishige K.; Salani P.; Takatsu A.
File in questo prodotto:
File Dimensione Formato  
2002.10141.pdf

accesso aperto

Descrizione: Preprint dell'autore
Tipologia: Altro
Licenza: Open Access
Dimensione 253.98 kB
Formato Adobe PDF
253.98 kB Adobe PDF
PubblicatoOnline.pdf

Accesso chiuso

Descrizione: pdf editoriale pubblicato online
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 438.68 kB
Formato Adobe PDF
438.68 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1253714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact