We show that while the number of coprime compositions of a positive integer n into k parts can be expressed as a Q-linear combination of the Jordan totient functions, this is never possible for the coprime partitions of n into k parts. We also show that the number p_k′(n) of coprime partitions of n into k parts can be expressed as a C-linear combination of the Jordan totient functions, for n sufficiently large, if and only if k∈{2,3} and in a unique way. Finally we introduce some generalizations of the Jordan totient functions and we show that p_k′(n) can be always expressed as a C-linear combination of them.

Coprime partitions and Jordan totient functions / Bubboloni D.; Luca F.. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. - ELETTRONICO. - 235:(2022), pp. 328-357. [10.1016/j.jnt.2021.05.017]

Coprime partitions and Jordan totient functions

Bubboloni D.
;
2022

Abstract

We show that while the number of coprime compositions of a positive integer n into k parts can be expressed as a Q-linear combination of the Jordan totient functions, this is never possible for the coprime partitions of n into k parts. We also show that the number p_k′(n) of coprime partitions of n into k parts can be expressed as a C-linear combination of the Jordan totient functions, for n sufficiently large, if and only if k∈{2,3} and in a unique way. Finally we introduce some generalizations of the Jordan totient functions and we show that p_k′(n) can be always expressed as a C-linear combination of them.
2022
235
328
357
Bubboloni D.; Luca F.
File in questo prodotto:
File Dimensione Formato  
Coprime-partitions-and-Jordan-totient-functions_2022_Journal-of-Number-Theor.pdf

Accesso chiuso

Descrizione: paper
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 389.96 kB
Formato Adobe PDF
389.96 kB Adobe PDF   Richiedi una copia
coprime-arxiv-print.pdf

accesso aperto

Descrizione: versione arxiv
Tipologia: Altro
Licenza: Open Access
Dimensione 263.73 kB
Formato Adobe PDF
263.73 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1253910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact