Interest in the Si/Ag(110) system, which forms highly ordered linear nanostructures coined 'silicon nanoribbons', was recently boosted by the claim that such nanoribbons may be formed by silicon atoms arranged in a 2D honeycomb structure as in graphene, i.e. silicene. Despite such a revived interest, many discrepancies still exist in the recently reported results. This paper reports on a systematic investigation by scanning tunneling microscopy and low-energy electron diffraction of the Si/Ag(110) system as a function of the amount of deposited silicon and the deposition temperature. This reveals a complex interplay between these two factors, resulting in a rich array of possible self-assembled nanostructures and surface reconstructions. Several novel findings and clarification of the contradictory results reported in the literature are discussed in this work. In particular, the deposition temperature is demonstrated to be a key parameter to control the width of the Si nanoribbons produced. Recently, massive linear nanostructures were reported to be 'multilayer silicene', forming once the deposited silicon amount exceeds full coverage. However, we show that such nanostructures are also observed at low silicon coverage, demonstrating that their formation is exclusively determined by a deposition temperature higher than 460 K. On the other hand, for Si amounts higher than one monolayer the surface presents a novel c(8 × 4) reconstruction, which is responsible for the ×4 periodicity detected by LEED measurements, previously attributed to the 1.6 nm-wide nanoribbons overlayer or to 'multilayer silicene'. Finally, the large collection of acquired data also allowed us to single out image artifacts that may explain the contradictory results appearing in previous papers. © 2013 IOP Publishing Ltd.

Systematic STM and LEED investigation of the Si/Ag(110) surface / Colonna S.; Serrano G.; Gori P.; Cricenti A.; Ronci F.. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 25:(2013), pp. 315301-315310. [10.1088/0953-8984/25/31/315301]

Systematic STM and LEED investigation of the Si/Ag(110) surface

Serrano G.;
2013

Abstract

Interest in the Si/Ag(110) system, which forms highly ordered linear nanostructures coined 'silicon nanoribbons', was recently boosted by the claim that such nanoribbons may be formed by silicon atoms arranged in a 2D honeycomb structure as in graphene, i.e. silicene. Despite such a revived interest, many discrepancies still exist in the recently reported results. This paper reports on a systematic investigation by scanning tunneling microscopy and low-energy electron diffraction of the Si/Ag(110) system as a function of the amount of deposited silicon and the deposition temperature. This reveals a complex interplay between these two factors, resulting in a rich array of possible self-assembled nanostructures and surface reconstructions. Several novel findings and clarification of the contradictory results reported in the literature are discussed in this work. In particular, the deposition temperature is demonstrated to be a key parameter to control the width of the Si nanoribbons produced. Recently, massive linear nanostructures were reported to be 'multilayer silicene', forming once the deposited silicon amount exceeds full coverage. However, we show that such nanostructures are also observed at low silicon coverage, demonstrating that their formation is exclusively determined by a deposition temperature higher than 460 K. On the other hand, for Si amounts higher than one monolayer the surface presents a novel c(8 × 4) reconstruction, which is responsible for the ×4 periodicity detected by LEED measurements, previously attributed to the 1.6 nm-wide nanoribbons overlayer or to 'multilayer silicene'. Finally, the large collection of acquired data also allowed us to single out image artifacts that may explain the contradictory results appearing in previous papers. © 2013 IOP Publishing Ltd.
2013
25
315301
315310
Goal 9: Industry, Innovation, and Infrastructure
Colonna S.; Serrano G.; Gori P.; Cricenti A.; Ronci F.
File in questo prodotto:
File Dimensione Formato  
Colonna_2013_J._Phys.%3A_Condens._Matter_25_315301.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1254636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact