Every finite solvable group G has a normal series with nilpotent factors. The smallest possible number of factors in such a series is called the Fitting height h(G). In the present paper, we derive an upper bound for h(G) in terms of the exponent of G. Our bound constitutes a considerable improvement of an earlier bound obtained in Shalev (Proc Am Math Soc 126(12):3495–3499, 1998).
Bounding the fitting height in terms of the exponent / Fumagalli F.; Leinen F.; Puglisi O.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - (2022), pp. 0-0. [10.1007/s10231-021-01182-7]
Bounding the fitting height in terms of the exponent
Fumagalli F.;Leinen F.;Puglisi O.
2022
Abstract
Every finite solvable group G has a normal series with nilpotent factors. The smallest possible number of factors in such a series is called the Fitting height h(G). In the present paper, we derive an upper bound for h(G) in terms of the exponent of G. Our bound constitutes a considerable improvement of an earlier bound obtained in Shalev (Proc Am Math Soc 126(12):3495–3499, 1998).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Fumagalli2022_Article_BoundingTheFittingHeightInTerm.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Creative commons
Dimensione
990.39 kB
Formato
Adobe PDF
|
990.39 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.