Every finite solvable group G has a normal series with nilpotent factors. The smallest possible number of factors in such a series is called the Fitting height h(G). In the present paper, we derive an upper bound for h(G) in terms of the exponent of G. Our bound constitutes a considerable improvement of an earlier bound obtained in Shalev (Proc Am Math Soc 126(12):3495–3499, 1998).

Bounding the fitting height in terms of the exponent / Fumagalli F.; Leinen F.; Puglisi O.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - (2022), pp. 0-0. [10.1007/s10231-021-01182-7]

Bounding the fitting height in terms of the exponent

Fumagalli F.;Leinen F.;Puglisi O.
2022

Abstract

Every finite solvable group G has a normal series with nilpotent factors. The smallest possible number of factors in such a series is called the Fitting height h(G). In the present paper, we derive an upper bound for h(G) in terms of the exponent of G. Our bound constitutes a considerable improvement of an earlier bound obtained in Shalev (Proc Am Math Soc 126(12):3495–3499, 1998).
2022
0
0
Fumagalli F.; Leinen F.; Puglisi O.
File in questo prodotto:
File Dimensione Formato  
Fumagalli2022_Article_BoundingTheFittingHeightInTerm.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 990.39 kB
Formato Adobe PDF
990.39 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact