This paper reviews the state of the art of non-stationary subdivision schemes, which are iterative procedures for generating smooth objects from discrete data, by repeated level dependent linear refinements. In particular the paper emphasises the potentiality of these schemes and the wide perspective they open, in comparison with stationary schemes based on level-independent linear refinements.

Non-stationary Subdivision Schemes: State of the Art and Perspectives / Conti C.; Dyn N.. - ELETTRONICO. - 336:(2021), pp. 39-71. (Intervento presentato al convegno International conference on Approximation Theory XVI, 2019 tenutosi a usa nel 2019) [10.1007/978-3-030-57464-2_4].

Non-stationary Subdivision Schemes: State of the Art and Perspectives

Conti C.;
2021

Abstract

This paper reviews the state of the art of non-stationary subdivision schemes, which are iterative procedures for generating smooth objects from discrete data, by repeated level dependent linear refinements. In particular the paper emphasises the potentiality of these schemes and the wide perspective they open, in comparison with stationary schemes based on level-independent linear refinements.
2021
Springer Proceedings in Mathematics and Statistics
International conference on Approximation Theory XVI, 2019
usa
2019
Conti C.; Dyn N.
File in questo prodotto:
File Dimensione Formato  
PROCAT16_ContiDyn_REVIEW_2.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact