This paper presents a new CFD approach for the assessment of the NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, the present work defines the transport equation source terms for NOx on the basis of a dedicate NOx-Damköhler number. The latter parameter allows to properly distinguish the "in-flame" contribution from the "post-flame" one. While the former is a mix of several mechanisms (prompt, N2O-pathway, thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a Large-Eddy Simulation (LES) framework where the Extended Turbulent Flame Speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to a detailed post processing highlighting the role of some key factors on to NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.

A novel les-based process for NOxemission assessment in a premixed swirl stabilized combustion system / Meloni R.; Andreini A.; Nassini P.C.. - ELETTRONICO. - 3:(2021), pp. 1-12. (Intervento presentato al convegno ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021 nel 2021) [10.1115/GT2021-59215].

A novel les-based process for NOxemission assessment in a premixed swirl stabilized combustion system

Meloni R.;Andreini A.;Nassini P. C.
2021

Abstract

This paper presents a new CFD approach for the assessment of the NOx emission. The methodology is validated against the experimental data of a heavy-duty gas turbine annular combustor. Since the NOx formation involves time scales that are different from the fuel oxidation time, the present work defines the transport equation source terms for NOx on the basis of a dedicate NOx-Damköhler number. The latter parameter allows to properly distinguish the "in-flame" contribution from the "post-flame" one. While the former is a mix of several mechanisms (prompt, N2O-pathway, thermal), the latter is dominated by the thermal contribution. The validation phase is developed in a Large-Eddy Simulation (LES) framework where the Extended Turbulent Flame Speed model is implemented to consider the influence of both heat loss and strain rate on the progress variable source term. The accuracy of the model against the most important operability parameters of the combustor is verified. A strong focus on the fuel composition effect onto NOx is presented as well. For any simulated operating condition, the present methodology is able to provide a limited percentage error if compared with the data, considering also different combustion regimes. Leveraging this alignment, the last portion of the paper is dedicated to a detailed post processing highlighting the role of some key factors on to NOx formation. In particular, the focus will be dedicated to the impact of the fuel gas composition and the pilot split.
2021
Proceedings of the ASME Turbo Expo
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
2021
Meloni R.; Andreini A.; Nassini P.C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact