The present paper summarizes the development of a Large- Eddy Simulation (LES) based approach for the prediction of CO emission in an industrial gas turbine combustor. Since the operating point of the modern combustors is really close to the extinction limit, the availability of a tool able to detect the onset of high-CO production can be useful for the proper definition of the combustion chamber air split or to introduce design improvements for the premixer itself. The accurate prediction of CO cannot rely on the flamelet assumption, representing the fundament of the modern combustion models. Consequently, in this work, the Extended Turbulent Flame Speed Closure (ETFSC) of the standard Flamelet Generated Manifold (FGM) model is employed to consider the effect of the heat loss and the strain rate on the flame brush. Moreover, a customized CO-Damköhler number is introduced to de-couple the in-flame CO production region from the post-flame contribution where the oxidation takes place. A fully premixed burner working at representative values of pressure and flame temperature of an annular combustor is selected for the validation phase of the process. The comparison against the experimental data shows that the process is not only able to capture the trend but also to predict CO in a quantitative manner. In particular, the interaction between the flame and the air fluxes at some critical sections of the combustor, leading the CO emission from the equilibrium value to the superequilibrium, has been correctly reproduced.

CO emission modeling in a heavy duty annular combustor operating with natural gas / Meloni R.; Gori S.; Andreini A.; Nassini P.C.. - ELETTRONICO. - 3:(2021), pp. 1-11. (Intervento presentato al convegno ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021 nel 2021) [10.1115/GT2021-59202].

CO emission modeling in a heavy duty annular combustor operating with natural gas

Andreini A.;Nassini P. C.
2021

Abstract

The present paper summarizes the development of a Large- Eddy Simulation (LES) based approach for the prediction of CO emission in an industrial gas turbine combustor. Since the operating point of the modern combustors is really close to the extinction limit, the availability of a tool able to detect the onset of high-CO production can be useful for the proper definition of the combustion chamber air split or to introduce design improvements for the premixer itself. The accurate prediction of CO cannot rely on the flamelet assumption, representing the fundament of the modern combustion models. Consequently, in this work, the Extended Turbulent Flame Speed Closure (ETFSC) of the standard Flamelet Generated Manifold (FGM) model is employed to consider the effect of the heat loss and the strain rate on the flame brush. Moreover, a customized CO-Damköhler number is introduced to de-couple the in-flame CO production region from the post-flame contribution where the oxidation takes place. A fully premixed burner working at representative values of pressure and flame temperature of an annular combustor is selected for the validation phase of the process. The comparison against the experimental data shows that the process is not only able to capture the trend but also to predict CO in a quantitative manner. In particular, the interaction between the flame and the air fluxes at some critical sections of the combustor, leading the CO emission from the equilibrium value to the superequilibrium, has been correctly reproduced.
2021
Proceedings of the ASME Turbo Expo
ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
2021
Meloni R.; Gori S.; Andreini A.; Nassini P.C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact