Ultrafast force-clamp spectroscopy (UFFCS) is a single molecule technique based on laser tweezers that allows the investigation of the chemomechanics of both conventional and unconventional myosins under load with unprecedented time resolution. In particular, the possibility to probe myosin motors under constant force right after the actin-myosin bond formation, together with the high rate of the force feedback (200 kHz), has shown UFFCS to be a valuable tool to study the load dependence of fast dynamics such as the myosin working stroke. Moreover, UFFCS enables the study of how processive and non-processive myosin-actin interactions are influenced by the intensity and direction of the applied force. By following this protocol, it will be possible to perform ultrafast force-clamp experiments on processive myosin-5 motors and on a variety of unconventional myosins. By some adjustments, the protocol could also be easily extended to the study of other classes of processive motors such as kinesins and dyneins. The protocol includes all the necessary steps, from the setup of the experimental apparatus to sample preparation, calibration procedures, data acquisition and analysis.

Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultra Force-Clamp Spectroscopy / Gardini L.; Kashchuk A.V.; Pavone F.S.; Capitanio M.. - In: JOURNAL OF VISUALIZED EXPERIMENTS. - ISSN 1940-087X. - ELETTRONICO. - (2021), pp. 0-0. [10.3791/62388]

Dissecting Mechanoenzymatic Properties of Processive Myosins with Ultra Force-Clamp Spectroscopy

Gardini L.
;
Pavone F. S.;Capitanio M.
2021

Abstract

Ultrafast force-clamp spectroscopy (UFFCS) is a single molecule technique based on laser tweezers that allows the investigation of the chemomechanics of both conventional and unconventional myosins under load with unprecedented time resolution. In particular, the possibility to probe myosin motors under constant force right after the actin-myosin bond formation, together with the high rate of the force feedback (200 kHz), has shown UFFCS to be a valuable tool to study the load dependence of fast dynamics such as the myosin working stroke. Moreover, UFFCS enables the study of how processive and non-processive myosin-actin interactions are influenced by the intensity and direction of the applied force. By following this protocol, it will be possible to perform ultrafast force-clamp experiments on processive myosin-5 motors and on a variety of unconventional myosins. By some adjustments, the protocol could also be easily extended to the study of other classes of processive motors such as kinesins and dyneins. The protocol includes all the necessary steps, from the setup of the experimental apparatus to sample preparation, calibration procedures, data acquisition and analysis.
2021
0
0
Gardini L.; Kashchuk A.V.; Pavone F.S.; Capitanio M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1257005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact