In this paper, the test supersonic ejector with conjugate heat transfer in solid bodies has been studied numerically. An extensive numerical campaign by means of open-source SU2 solver is performed to analyze the fluid dynamics of the ejector flowfield accounting for the heat conduction in solids. The fluid domain simulation is carried out by employing compressible RANS treatment whilst the heat distribution in solids is predicted by simultaneous solving the steady heat conduction equation. The working fluid is R245fa and all simulations are performed accounting for real gas properties of the refrigerant. Experimental data against numerical results comparison showed close agreement both in terms mass flow rates and static pressure distribution along the walls. Within the CFD trials, the most valuable flow parameters at a wall vicinity are compared: distribution across the boundary layer of the temperature and the turbulent kinetic energy specific dissipation rate, boundary layer displacement and momentum thicknesses. A comprehensive analysis of the simulation results cases with adiabatic walls against cases with heat permeable walls revealed the actual differences of the flow properties in the wall vicinity. However, the ejector performance has not changed noticeably while accounting for the heat conduction in solids.

Conjugate heat transfer numerical study of the ejector by means of SU2 solver / D V Brezgin, K E Aronson, F Mazzelli, A Milazzo. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - STAMPA. - 2088:(2021), pp. 0-0. [10.1088/1742-6596/2088/1/012004]

Conjugate heat transfer numerical study of the ejector by means of SU2 solver

F Mazzelli;A Milazzo
2021

Abstract

In this paper, the test supersonic ejector with conjugate heat transfer in solid bodies has been studied numerically. An extensive numerical campaign by means of open-source SU2 solver is performed to analyze the fluid dynamics of the ejector flowfield accounting for the heat conduction in solids. The fluid domain simulation is carried out by employing compressible RANS treatment whilst the heat distribution in solids is predicted by simultaneous solving the steady heat conduction equation. The working fluid is R245fa and all simulations are performed accounting for real gas properties of the refrigerant. Experimental data against numerical results comparison showed close agreement both in terms mass flow rates and static pressure distribution along the walls. Within the CFD trials, the most valuable flow parameters at a wall vicinity are compared: distribution across the boundary layer of the temperature and the turbulent kinetic energy specific dissipation rate, boundary layer displacement and momentum thicknesses. A comprehensive analysis of the simulation results cases with adiabatic walls against cases with heat permeable walls revealed the actual differences of the flow properties in the wall vicinity. However, the ejector performance has not changed noticeably while accounting for the heat conduction in solids.
2021
2088
0
0
Goal 7: Affordable and clean energy
D V Brezgin, K E Aronson, F Mazzelli, A Milazzo
File in questo prodotto:
File Dimensione Formato  
Brezgin_2021_J._Phys. _Conf._Ser._2088_012004.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1257708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact