Compound floods are an active area of research where the complex interaction between pluvial, fluvial, coastal or groundwater flooding are analyzed. A number of studies have simulated the compound flooding impacts of precipitation, river discharge and storm surge variables with different numerical models and linking techniques. However, groundwater flooding is often neglected in flood risk assessments due to its sporadic frequency - as most regions have water tables sufficiently low that do not exacerbate flooding conditions -, isolated impacts and considerably less severity in respect to other types of flooding. This paper presents a physically-based, loosely-coupled modelling framework using FLO-2D and MODFLOW-2005 that is capable to simulate surface-subsurface water interactions to represent compound flooding events in North Miami. FLO-2D, responsible of the surface hydrology and infiltration processes, transfers the infiltration volume as recharge to MODFLOW-2005 until the soil absorption capacity is exceeded, while MODFLOW-2005 return exchange flow to the surface when groundwater heads are higher than the surface depth. The model calibration is based on three short-lived storm events that as individual processes represent minimum flooding conditions but in combination with pre-existing high-water table levels results in widespread flooding across the study area. Understanding groundwater flood risk is of particular interest to low-elevation coastal karst environments as the sudden emergence of the water table at ground surface can result in social disruption, adverse effects to essential services and damage infrastructure. Results are validated using FEMA’s severe repetitive loss (SRL) property records and crowdsourced data. Further research should assess the exacerbated impacts of high tides and sea level rise on water tables under current and future climate projections
Compound flood modelling framework for rainfall-groundwater interactions / Peña, Francisco; Nardi, Fernando; Melesse, Assefa; Obeysekera, Jayantha; Castelli, Fabio; Price, René M.; Crowl, Todd; Gonzalez-Ramirez, Noemi. - In: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES. - ISSN 1561-8633. - ELETTRONICO. - (2022), pp. 0-0. [10.5194/nhess-2021-259]
Compound flood modelling framework for rainfall-groundwater interactions
Peña, Francisco;Nardi, Fernando;Castelli, Fabio;
2022
Abstract
Compound floods are an active area of research where the complex interaction between pluvial, fluvial, coastal or groundwater flooding are analyzed. A number of studies have simulated the compound flooding impacts of precipitation, river discharge and storm surge variables with different numerical models and linking techniques. However, groundwater flooding is often neglected in flood risk assessments due to its sporadic frequency - as most regions have water tables sufficiently low that do not exacerbate flooding conditions -, isolated impacts and considerably less severity in respect to other types of flooding. This paper presents a physically-based, loosely-coupled modelling framework using FLO-2D and MODFLOW-2005 that is capable to simulate surface-subsurface water interactions to represent compound flooding events in North Miami. FLO-2D, responsible of the surface hydrology and infiltration processes, transfers the infiltration volume as recharge to MODFLOW-2005 until the soil absorption capacity is exceeded, while MODFLOW-2005 return exchange flow to the surface when groundwater heads are higher than the surface depth. The model calibration is based on three short-lived storm events that as individual processes represent minimum flooding conditions but in combination with pre-existing high-water table levels results in widespread flooding across the study area. Understanding groundwater flood risk is of particular interest to low-elevation coastal karst environments as the sudden emergence of the water table at ground surface can result in social disruption, adverse effects to essential services and damage infrastructure. Results are validated using FEMA’s severe repetitive loss (SRL) property records and crowdsourced data. Further research should assess the exacerbated impacts of high tides and sea level rise on water tables under current and future climate projectionsI documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.