Background: Feed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth. Results: Corrected daily feed intake (DFIAdj) and average daily weight measurements (DBWAvg) on 8981 (n = 525,240 observations) and 5643 (n = 283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order = 2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n = 855; DBWAvg: n = 590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n =1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P < 0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01 % for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95 % for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior. Conclusions: We have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.

Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars / Howard Jeremy; Jiao Shihui; Tiezzi Francesco; Huang Yijian; Gray Kent; Maltecca Christian. - In: BMC GENETICS. - ISSN 1471-2156. - ELETTRONICO. - 16:(2015), pp. 1-11. [10.1186/s12863-015-0218-8]

Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars

Tiezzi Francesco;
2015

Abstract

Background: Feed intake and growth are economically important traits in swine production. Previous genome wide association studies (GWAS) have utilized average daily gain or daily feed intake to identify regions that impact growth and feed intake across time. The use of longitudinal models in GWAS studies, such as random regression, allows for SNPs having a heterogeneous effect across the trajectory to be characterized. The objective of this study is therefore to conduct a single step GWAS (ssGWAS) on the animal polynomial coefficients for feed intake and growth. Results: Corrected daily feed intake (DFIAdj) and average daily weight measurements (DBWAvg) on 8981 (n = 525,240 observations) and 5643 (n = 283,607 observations) animals were utilized in a random regression model using Legendre polynomials (order = 2) and a relationship matrix that included genotyped and un-genotyped animals. A ssGWAS was conducted on the animal polynomials coefficients (intercept, linear and quadratic) for animals with genotypes (DFIAdj: n = 855; DBWAvg: n = 590). Regions were characterized based on the variance of 10-SNP sliding windows GEBV (WGEBV). A bootstrap analysis (n =1000) was conducted to declare significance. Heritability estimates for the traits trajectory ranged from 0.34-0.52 to 0.07-0.23 for DBWAvg and DFIAdj, respectively. Genetic correlations across age classes were large and positive for both DBWAvg and DFIAdj, albeit age classes at the beginning had a small to moderate genetic correlation with age classes towards the end of the trajectory for both traits. The WGEBV variance explained by significant regions (P < 0.001) for each polynomial coefficient ranged from 0.2-0.9 to 0.3-1.01 % for DBWAvg and DFIAdj, respectively. The WGEBV variance explained by significant regions for the trajectory was 1.54 and 1.95 % for DBWAvg and DFIAdj. Both traits identified candidate genes with functions related to metabolite and energy homeostasis, glucose and insulin signaling and behavior. Conclusions: We have identified regions of the genome that have an impact on the intercept, linear and quadratic terms for DBWAvg and DFIAdj. These results provide preliminary evidence that individual growth and feed intake trajectories are impacted by different regions of the genome at different times.
2015
16
1
11
Howard Jeremy; Jiao Shihui; Tiezzi Francesco; Huang Yijian; Gray Kent; Maltecca Christian
File in questo prodotto:
File Dimensione Formato  
howard2015BMCgen.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 556.86 kB
Formato Adobe PDF
556.86 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1258619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 42
social impact