For every $m,n in N$ and every field $K$, let $M(m imes n, K)$ be the vector space of the $(m imes n)$-matrices over $K$ and let $S(n,K)$ be the vector space of the symmetric $(n imes n)$-matrices over $K$. We say that an affine subspace $S$ of $M(m imes n, K)$ or of $S(n,K)$ has constant rank $r$ if every matrix of $S$ has rank $r$. Define $${cal A}^K(m imes n; r)= { S ;| ; S ; mbox{ m affine subsapce of $M(m imes n, K)$ of constant rank } r}$$ $${cal A}_{sym}^K(n;r)= { S ;| ; S ; mbox{ m affine subsapce of $S(n,K)$ of constant rank } r}$$ $$a^K(m imes n;r) = max {dim S mid S in {cal A}^K(m imes n; r ) }.$$ $$a_{sym}^K(n;r) = max {dim S mid S in {cal A}_{sym}^K(n,r) }.$$ In this paper we prove the following two formulas for $r leq m leq n$: $$a_{sym}^{R}(n,r) = r(n-r)+ left[rac{r^2}{4} ight],$$ $$a^{R}(m imes n,r) = r(n-r)+ rac{r(r-1)}{2} .$$

Affine subspaces of matrices with constant rank / Elena Rubei. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 644:(2022), pp. 259-269. [10.1016/j.laa.2022.03.002]

Affine subspaces of matrices with constant rank

Elena Rubei
2022

Abstract

For every $m,n in N$ and every field $K$, let $M(m imes n, K)$ be the vector space of the $(m imes n)$-matrices over $K$ and let $S(n,K)$ be the vector space of the symmetric $(n imes n)$-matrices over $K$. We say that an affine subspace $S$ of $M(m imes n, K)$ or of $S(n,K)$ has constant rank $r$ if every matrix of $S$ has rank $r$. Define $${cal A}^K(m imes n; r)= { S ;| ; S ; mbox{ m affine subsapce of $M(m imes n, K)$ of constant rank } r}$$ $${cal A}_{sym}^K(n;r)= { S ;| ; S ; mbox{ m affine subsapce of $S(n,K)$ of constant rank } r}$$ $$a^K(m imes n;r) = max {dim S mid S in {cal A}^K(m imes n; r ) }.$$ $$a_{sym}^K(n;r) = max {dim S mid S in {cal A}_{sym}^K(n,r) }.$$ In this paper we prove the following two formulas for $r leq m leq n$: $$a_{sym}^{R}(n,r) = r(n-r)+ left[rac{r^2}{4} ight],$$ $$a^{R}(m imes n,r) = r(n-r)+ rac{r(r-1)}{2} .$$
2022
644
259
269
Goal 17: Partnerships for the goals
Elena Rubei
File in questo prodotto:
File Dimensione Formato  
2111.14997.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 118.47 kB
Formato Adobe PDF
118.47 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1259797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact