Several lines of evidence correlate the overexpression of glutathione S-transferase omega 1-1 (GSTO1-1) with the onset of drug resistance of cancer cells; however, no direct evidence is yet available. In order to investigate the mechanisms involved, stable transfection with GSTO1-1 complementary DNA was performed in HeLa cells, which spontaneously express very low levels of GSTO1-1. When transfected cells were seeded at low density, a sharp increase in GSTO1-1 expression was observed as compared with controls, along with an increased resistance against cisplatin cytotoxicity. When seeded at increasing densities, control untransfected cells also presented with an increase in GSTO1-1 expression, again accompanied by cisplatin resistance; the latter was significantly reduced after transfection with GSTO1-1 small interfering RNA. Cisplatin resistance of transfected cells was not accounted for by changes in the intracellular drug concentration nor in the amount of DNA cross-links or content of glutathione. Rather, transfected cells presented with a marked decrease of apoptosis as compared with controls, suggesting that GSTO1-1 overexpression may prevent cisplatin toxicity by interfering with the apoptotic process. Cisplatin treatment was in fact followed at early times (1-2 h) by activation of both Akt kinase and extracellular signal-regulated kinase (ERK)-1/2 in the transfected cells but not in controls. Conversely, in transfected cells, the strong activation of Jun N-terminal kinase (JNK)-1 induced by cisplatin at later times (10-20 h) was completely prevented. In conclusion, GSTO1-1 overexpression appears to be associated with activation of survival pathways (Akt and ERK1/2) and inhibition of apoptotic pathways (JNK1), as well as protection against cisplatin-induced apoptosis. © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity / Piaggi S.; Raggi C.; Corti A.; Pitzalis E.; Mascherpa M.C.; Saviozzi M.; Pompella A.; Casini A.F.. - In: CARCINOGENESIS. - ISSN 0143-3334. - STAMPA. - 31:(2010), pp. 804-811. [10.1093/carcin/bgq031]

Glutathione transferase omega 1-1 (GSTO1-1) plays an anti-apoptotic role in cell resistance to cisplatin toxicity

Raggi C.;Pitzalis E.;
2010

Abstract

Several lines of evidence correlate the overexpression of glutathione S-transferase omega 1-1 (GSTO1-1) with the onset of drug resistance of cancer cells; however, no direct evidence is yet available. In order to investigate the mechanisms involved, stable transfection with GSTO1-1 complementary DNA was performed in HeLa cells, which spontaneously express very low levels of GSTO1-1. When transfected cells were seeded at low density, a sharp increase in GSTO1-1 expression was observed as compared with controls, along with an increased resistance against cisplatin cytotoxicity. When seeded at increasing densities, control untransfected cells also presented with an increase in GSTO1-1 expression, again accompanied by cisplatin resistance; the latter was significantly reduced after transfection with GSTO1-1 small interfering RNA. Cisplatin resistance of transfected cells was not accounted for by changes in the intracellular drug concentration nor in the amount of DNA cross-links or content of glutathione. Rather, transfected cells presented with a marked decrease of apoptosis as compared with controls, suggesting that GSTO1-1 overexpression may prevent cisplatin toxicity by interfering with the apoptotic process. Cisplatin treatment was in fact followed at early times (1-2 h) by activation of both Akt kinase and extracellular signal-regulated kinase (ERK)-1/2 in the transfected cells but not in controls. Conversely, in transfected cells, the strong activation of Jun N-terminal kinase (JNK)-1 induced by cisplatin at later times (10-20 h) was completely prevented. In conclusion, GSTO1-1 overexpression appears to be associated with activation of survival pathways (Akt and ERK1/2) and inhibition of apoptotic pathways (JNK1), as well as protection against cisplatin-induced apoptosis. © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.
2010
31
804
811
Piaggi S.; Raggi C.; Corti A.; Pitzalis E.; Mascherpa M.C.; Saviozzi M.; Pompella A.; Casini A.F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1260396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 77
social impact