Objective Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Methods Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. Results The average RNFL thickness and the thickness of each of the 90 quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Conclusions Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings.

Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy / Balestrini S; Clayton LMS; Bartmann AP; Chinthapalli K; Novy J; Coppola A; Wandschneider B; Stern WM; Acheson J; Bell GS; Sander JW; Sisodiya SM. - In: JOURNAL OF NEUROLOGY, NEUROSURGERY AND PSYCHIATRY. - ISSN 0022-3050. - 87:(2016), pp. 396-401. [10.1136/jnnp-2015-310521]

Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy

Balestrini S;
2016

Abstract

Objective Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Methods Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. Results The average RNFL thickness and the thickness of each of the 90 quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Conclusions Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings.
2016
87
396
401
Balestrini S; Clayton LMS; Bartmann AP; Chinthapalli K; Novy J; Coppola A; Wandschneider B; Stern WM; Acheson J; Bell GS; Sander JW; Sisodiya SM
File in questo prodotto:
File Dimensione Formato  
396.full.pdf

Accesso chiuso

Dimensione 499.33 kB
Formato Adobe PDF
499.33 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1261875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact