We developed a LASiP prototype that has a sensitive area 8 times larger than a 6 × 6 mm2 SiPM. We built a proof-of-concept micro-camera consisting of a 40 × 40 × 8 mm3 NaI(Tl) crystal coupled to 4 LASiPs. We evaluated its performance in a central region of 15×15 mm2, where we were able to reconstruct images of a 99mTc capillary with an intrinsic spatial resolution of ~2 mm and an energy resolution of ~11.6% at 140 keV. We used these measurements to validate Geant4 simulations of the system. This can be extended to simulate a larger camera with more and larger pixels, which could be used to optimize the implementation of LASiPs in large SPECT cameras.
Large-Area SiPM Pixels (LASiPs): A cost-effective solution towards compact large SPECT cameras / Passeri. - In: PHYSICA MEDICA. - ISSN 1120-1797. - ELETTRONICO. - 82:(2021), pp. 171-184. [10.1016/j.ejmp.2021.01.066]
Large-Area SiPM Pixels (LASiPs): A cost-effective solution towards compact large SPECT cameras
Passeri
Methodology
2021
Abstract
We developed a LASiP prototype that has a sensitive area 8 times larger than a 6 × 6 mm2 SiPM. We built a proof-of-concept micro-camera consisting of a 40 × 40 × 8 mm3 NaI(Tl) crystal coupled to 4 LASiPs. We evaluated its performance in a central region of 15×15 mm2, where we were able to reconstruct images of a 99mTc capillary with an intrinsic spatial resolution of ~2 mm and an energy resolution of ~11.6% at 140 keV. We used these measurements to validate Geant4 simulations of the system. This can be extended to simulate a larger camera with more and larger pixels, which could be used to optimize the implementation of LASiPs in large SPECT cameras.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.