Hypothesis: Calciprotein particles (CPPs) are endogenous nanoparticles consisting of hybrid mineral-organic colloidal complexes made of calcium phosphates and Fetuin-A (Fet-A), a protein that in physiological conditions binds to amorphous calcium phosphate forming primary CPP (CPP1). CPP1 can crystallize resulting in hydroxyapatite-based secondary CPP (CPP2) that can eventually precipitate leading to vascular calcifications. The treatment of patients with molecules and ions that delay the amorphous-to-crystalline transition has shown promising results from a clinical perspective, but the study of their mechanism of action has not been thoroughly examined so far. Experiments: This work describes the formation and crystallization mechanism of synthetic analogs of endogenous CPPs. The effect of different concentrations of Fet-A and of stabilizing agents (Mg2+, citrate and pyrophosphate) on the features and stability of CPPs was addressed by combining different characterization techniques such as turbidimetry, dynamic light scattering, infrared spectroscopy, and scanning electron microscopy. Findings: The results show that the stabilizing agents display different action mechanisms and are effective to a different extent in preventing the formation of CPPs or delaying their crystallization. Such findings could be of interest to develop effective therapies for vascular calcifications and to deepen the understanding of amorphous calcium phosphate stabilization and its interaction with proteins.

A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms / Gelli R.; Pucci V.; Ridi F.; Baglioni P.. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - ELETTRONICO. - 620:(2022), pp. 431-441. [10.1016/j.jcis.2022.04.025]

A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms

Gelli R.;Pucci V.;Ridi F.
;
Baglioni P.
2022

Abstract

Hypothesis: Calciprotein particles (CPPs) are endogenous nanoparticles consisting of hybrid mineral-organic colloidal complexes made of calcium phosphates and Fetuin-A (Fet-A), a protein that in physiological conditions binds to amorphous calcium phosphate forming primary CPP (CPP1). CPP1 can crystallize resulting in hydroxyapatite-based secondary CPP (CPP2) that can eventually precipitate leading to vascular calcifications. The treatment of patients with molecules and ions that delay the amorphous-to-crystalline transition has shown promising results from a clinical perspective, but the study of their mechanism of action has not been thoroughly examined so far. Experiments: This work describes the formation and crystallization mechanism of synthetic analogs of endogenous CPPs. The effect of different concentrations of Fet-A and of stabilizing agents (Mg2+, citrate and pyrophosphate) on the features and stability of CPPs was addressed by combining different characterization techniques such as turbidimetry, dynamic light scattering, infrared spectroscopy, and scanning electron microscopy. Findings: The results show that the stabilizing agents display different action mechanisms and are effective to a different extent in preventing the formation of CPPs or delaying their crystallization. Such findings could be of interest to develop effective therapies for vascular calcifications and to deepen the understanding of amorphous calcium phosphate stabilization and its interaction with proteins.
2022
620
431
441
Gelli R.; Pucci V.; Ridi F.; Baglioni P.
File in questo prodotto:
File Dimensione Formato  
pagination_YJCIS_30051.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1265575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact