Hydrologic tracer techniques were applied to Rio Montevecchio (SW Sardinia, Italy), a stream affected by mine drainage, allowing the calculation of discharge and contaminant loads. Discharge along the stream showed a constant increase throughout the 2.7 km-long study reach, up to 13.6 l/s at the last synoptic point. Calculated loads of mine-related constituents were large, reaching values of 1780 kg/day for SO42−, 340 kg/day for Zn, 47 kg/day for Fe, and 50 kg/day for Mn. The difference of the cumulative instream metal loads between the first and the last synoptic sampling points indicated gains of 421 kg/day for Zn, 2080 kg/day for SO42−, 56 kg/day for Mn, and 50 kg/day for Fe. The source areas critical for contaminants loading were almost all concentrated in the first 800 m of the stream, with the exception of Pb, whose loading occurs evenly along the whole study reach. Precipitation of secondary minerals along the streambed was responsible for a very high attenuation of Al and Fe loads (66% and 77%) and affected also SO42− and Zn loads, though less effectively. Rio Montevecchio has the second highest metal load among the rivers investigated with tracer techniques in SW Sardinia. In comparison with Rio Irvi, which has one order of magnitude higher metal loads, natural attenuation processes limit the loads in Rio Montevecchio. Results are useful to clarify the hydrogeochemical paths involved in the release and attenuation of pollutants, improving our understanding of stream responses to contamination and aiding development of site-specific remediation actions.

Assessment of origin and fate of contaminants along mining-affected Rio Montevecchio (SW Sardinia, Italy): A hydrologic-tracer and environmental mineralogy study / De Giudici G.; Medas D.; Cidu R.; Lattanzi P.; Rigonat N.; Frau I.; Podda F.; Marras P.A.; Dore E.; Frau F.; Rimondi V.; Runkel R.L.; Wanty R.B.; Kimball B.. - In: APPLIED GEOCHEMISTRY. - ISSN 0883-2927. - ELETTRONICO. - 109:(2019), pp. 104420-104431. [10.1016/j.apgeochem.2019.104420]

Assessment of origin and fate of contaminants along mining-affected Rio Montevecchio (SW Sardinia, Italy): A hydrologic-tracer and environmental mineralogy study

Lattanzi P.;Rimondi V.;
2019

Abstract

Hydrologic tracer techniques were applied to Rio Montevecchio (SW Sardinia, Italy), a stream affected by mine drainage, allowing the calculation of discharge and contaminant loads. Discharge along the stream showed a constant increase throughout the 2.7 km-long study reach, up to 13.6 l/s at the last synoptic point. Calculated loads of mine-related constituents were large, reaching values of 1780 kg/day for SO42−, 340 kg/day for Zn, 47 kg/day for Fe, and 50 kg/day for Mn. The difference of the cumulative instream metal loads between the first and the last synoptic sampling points indicated gains of 421 kg/day for Zn, 2080 kg/day for SO42−, 56 kg/day for Mn, and 50 kg/day for Fe. The source areas critical for contaminants loading were almost all concentrated in the first 800 m of the stream, with the exception of Pb, whose loading occurs evenly along the whole study reach. Precipitation of secondary minerals along the streambed was responsible for a very high attenuation of Al and Fe loads (66% and 77%) and affected also SO42− and Zn loads, though less effectively. Rio Montevecchio has the second highest metal load among the rivers investigated with tracer techniques in SW Sardinia. In comparison with Rio Irvi, which has one order of magnitude higher metal loads, natural attenuation processes limit the loads in Rio Montevecchio. Results are useful to clarify the hydrogeochemical paths involved in the release and attenuation of pollutants, improving our understanding of stream responses to contamination and aiding development of site-specific remediation actions.
2019
109
104420
104431
Goal 6: Clean water and sanitation
Goal 11: Sustainable cities and communities
De Giudici G.; Medas D.; Cidu R.; Lattanzi P.; Rigonat N.; Frau I.; Podda F.; Marras P.A.; Dore E.; Frau F.; Rimondi V.; Runkel R.L.; Wanty R.B.; Kimball B.
File in questo prodotto:
File Dimensione Formato  
Manuscript_NO_track_changes.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Preprint (Submitted version)
Licenza: Tutti i diritti riservati
Dimensione 342.17 kB
Formato Adobe PDF
342.17 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1267221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact