Saber-toothed cats were armed with formidable weapons. They evolved a number of highly derived morphological features, most notably a pair of extremely long upper canines, which makes them unique within the felid family. Although the sabertooth character evolved several times among carnivorous mammals, sabertooth clades mostly had disjunctive occurrences both in space and time, and no sabertooth is alive today. We studied the rates of phenotypic and taxonomic diversification in the mandible of sabertooths, as compared to the rates calculated for both extinct and extant conical toothed cats. We found that the mandible's shape and physical properties in sabertooth clades evolved at distinctly higher rates than the rest of the felid tree. In addition, sabertooths had similar speciation rate to conical toothed cats, but statistically higher extinction rate. The wealth of morphological specializations required to be a sabertooth, and their tendency to focus on large-sized species as prey, was likely responsible for such high extinction rate, and for the peculiar, disjunctive patterns of sabertooth clade occurrence in the fossil record.
Evolution of the sabertooth mandible: A deadly ecomorphological specialization / Piras, P., Silvestro, D., Carotenuto, F., Castiglione, S., Kotsakis, A., Maiorino, L., Melchionna, M., Mondanaro, A., Sansalone, G., Serio, C., Vero, V.A., Raia, P.. - In: PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY. - ISSN 0031-0182. - STAMPA. - 496:(2018), pp. 166-174. [10.1016/j.palaeo.2018.01.034]
Evolution of the sabertooth mandible: A deadly ecomorphological specialization
Mondanaro A.;
2018
Abstract
Saber-toothed cats were armed with formidable weapons. They evolved a number of highly derived morphological features, most notably a pair of extremely long upper canines, which makes them unique within the felid family. Although the sabertooth character evolved several times among carnivorous mammals, sabertooth clades mostly had disjunctive occurrences both in space and time, and no sabertooth is alive today. We studied the rates of phenotypic and taxonomic diversification in the mandible of sabertooths, as compared to the rates calculated for both extinct and extant conical toothed cats. We found that the mandible's shape and physical properties in sabertooth clades evolved at distinctly higher rates than the rest of the felid tree. In addition, sabertooths had similar speciation rate to conical toothed cats, but statistically higher extinction rate. The wealth of morphological specializations required to be a sabertooth, and their tendency to focus on large-sized species as prey, was likely responsible for such high extinction rate, and for the peculiar, disjunctive patterns of sabertooth clade occurrence in the fossil record.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0031018217310465-main.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.