We consider the problem of determining a polyhedral conductivity inclusion embedded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [BerFra20] and [BerFraVes21] in the two-dimensional case to the three-dimensional setting.

Lipschitz stable determination of polyhedral conductivity inclusions from local boundary measurements / Andrea Aspri, Elena Beretta, Elisa Francini, Sergio Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 54:(2022), pp. 5103-5575.0-5103-5575.0. [10.1137/22M1480550]

Lipschitz stable determination of polyhedral conductivity inclusions from local boundary measurements

Elisa Francini
;
Sergio Vessella
2022

Abstract

We consider the problem of determining a polyhedral conductivity inclusion embedded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [BerFra20] and [BerFraVes21] in the two-dimensional case to the three-dimensional setting.
2022
54
0
0
Andrea Aspri, Elena Beretta, Elisa Francini, Sergio Vessella
File in questo prodotto:
File Dimensione Formato  
aspriberettafrancinivessella2022finalereferata.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 842.17 kB
Formato Adobe PDF
842.17 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1275981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact