We consider the problem of determining a polyhedral conductivity inclusion embedded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [BerFra20] and [BerFraVes21] in the two-dimensional case to the three-dimensional setting.
Lipschitz stable determination of polyhedral conductivity inclusions from local boundary measurements / Andrea Aspri, Elena Beretta, Elisa Francini, Sergio Vessella. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 54:(2022), pp. 5103-5575.0-5103-5575.0. [10.1137/22M1480550]
Lipschitz stable determination of polyhedral conductivity inclusions from local boundary measurements
Elisa Francini
;Sergio Vessella
2022
Abstract
We consider the problem of determining a polyhedral conductivity inclusion embedded in a homogeneous isotropic medium from boundary measurements. We prove global Lipschitz stability for the polyhedral inclusion from the local Dirichlet-to-Neumann map extending in a highly nontrivial way the results obtained in [BerFra20] and [BerFraVes21] in the two-dimensional case to the three-dimensional setting.File | Dimensione | Formato | |
---|---|---|---|
aspriberettafrancinivessella2022finalereferata.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
842.17 kB
Formato
Adobe PDF
|
842.17 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.