Incorporating lanthanoid(III)-radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single-molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln-radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)-radical compounds of formula [Gd(18-c-6)X4 SQ(NO3 )].I3 (18-c-6=18-crown-6, X4 SQ⋅- =tetrahalo-1,2-semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X-ray crystallography, UV-Visible-NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd-SQ ∼-2.0 cm-1 (Hex =-2JGd-SQ (SGd SSQ )) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization.
Modulation of Slow Magnetic Relaxation in Gd(III)-Tetrahalosemiquinonate Complexes / Dunstan, Maja A; Brown, Dominic S; Sorace, Lorenzo; Mole, Richard A; Boskovic, Colette. - In: CHEMISTRY - AN ASIAN JOURNAL. - ISSN 1861-471X. - ELETTRONICO. - 17:(2022), pp. 0-0. [10.1002/asia.202200325]
Modulation of Slow Magnetic Relaxation in Gd(III)-Tetrahalosemiquinonate Complexes
Sorace, Lorenzo;
2022
Abstract
Incorporating lanthanoid(III)-radical magnetic exchange coupling is a possible route to improving the performance of lanthanoid (Ln) single-molecule magnets (SMMs), molecular materials that exhibit slow relaxation and low temperature quantum tunnelling of the magnetization. Complexes of Gd(III) can conveniently be used as model systems to study the Ln-radical exchange coupling, thanks to the absence of the orbital angular momentum that is present for many Ln(III) ions. Two new Gd(III)-radical compounds of formula [Gd(18-c-6)X4 SQ(NO3 )].I3 (18-c-6=18-crown-6, X4 SQ⋅- =tetrahalo-1,2-semiquinonate, 1: X=Cl, 2: X=Br) have been synthesized, and the presence of the dioxolene ligand in its semiquinonate form confirmed by X-ray crystallography, UV-Visible-NIR spectroscopy and voltammetry. Static magnetometry and EPR spectroscopy indicate differences in the low temperature magnetic properties of the two compounds, with antiferromagnetic exchange coupling of JGd-SQ ∼-2.0 cm-1 (Hex =-2JGd-SQ (SGd SSQ )) determined by data fitting. Interestingly, compound 1 exhibits slow magnetic relaxation in applied magnetic fields while 2 relaxes much faster, pointing to the major role of packing effects in modulating slow relaxation of the magnetization.File | Dimensione | Formato | |
---|---|---|---|
217-GdX4SQ_ChemAsianJ_Dunstan_2022.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | |
GdX4SQ_manuscript_revised.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Open Access
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.