We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.
On metric and cohomological properties of Oeljeklaus-Toma manifolds / Daniele Angella, Arturas Dubickas, Alexandra Otiman, Jonas Stelzig. - In: PUBLICACIONS MATEMÀTIQUES. - ISSN 0214-1493. - STAMPA. - 68:(2024), pp. 219-239. [10.5565/PUBLMAT6812409]
On metric and cohomological properties of Oeljeklaus-Toma manifolds
Daniele Angella;Alexandra Otiman;Jonas Stelzig
2024
Abstract
We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.File | Dimensione | Formato | |
---|---|---|---|
6812409.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
480.12 kB
Formato
Adobe PDF
|
480.12 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.