We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.

On metric and cohomological properties of Oeljeklaus-Toma manifolds / Daniele Angella, Arturas Dubickas, Alexandra Otiman, Jonas Stelzig. - In: PUBLICACIONS MATEMÀTIQUES. - ISSN 0214-1493. - STAMPA. - (In corso di stampa), pp. 0-0.

On metric and cohomological properties of Oeljeklaus-Toma manifolds

Daniele Angella;Alexandra Otiman;Jonas Stelzig
In corso di stampa

Abstract

We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.
0
0
Daniele Angella, Arturas Dubickas, Alexandra Otiman, Jonas Stelzig
File in questo prodotto:
File Dimensione Formato  
2201.06377.pdf

Accesso chiuso

Tipologia: Preprint (Submitted version)
Licenza: DRM non definito
Dimensione 521.51 kB
Formato Adobe PDF
521.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1279979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact