We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.
On metric and cohomological properties of Oeljeklaus-Toma manifolds / Daniele Angella, Arturas Dubickas, Alexandra Otiman, Jonas Stelzig. - In: PUBLICACIONS MATEMÀTIQUES. - ISSN 0214-1493. - STAMPA. - (In corso di stampa), pp. 0-0.
On metric and cohomological properties of Oeljeklaus-Toma manifolds
Daniele Angella;Alexandra Otiman;Jonas Stelzig
In corso di stampa
Abstract
We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $\omega$ such that $\partial\overline\partial\omega^k = 0$ for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.File | Dimensione | Formato | |
---|---|---|---|
2201.06377.pdf
Accesso chiuso
Tipologia:
Preprint (Submitted version)
Licenza:
DRM non definito
Dimensione
521.51 kB
Formato
Adobe PDF
|
521.51 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.