We study 1-parameter families in the space $mathcal{M}^G_1$ of $G$-invariant, unit volume metrics on a given compact, connected, almost-effective homogeneous space $M = G/H$. In particular, we focus on diverging sequences, i. e. that are not contained in any compact subset of $mathcal{M}^G_1$, and we prove some structure results for those which have bounded curvature. We also relate our results to an algebraic version of collapse.
Diverging sequences of unit volume invariant metrics with bounded curvature / Pediconi, F. - In: ANNALS OF GLOBAL ANALYSIS AND GEOMETRY. - ISSN 0232-704X. - STAMPA. - 56:(2019), pp. 519-553. [10.1007/s10455-019-09677-6]
Diverging sequences of unit volume invariant metrics with bounded curvature
Pediconi, F
2019
Abstract
We study 1-parameter families in the space $mathcal{M}^G_1$ of $G$-invariant, unit volume metrics on a given compact, connected, almost-effective homogeneous space $M = G/H$. In particular, we focus on diverging sequences, i. e. that are not contained in any compact subset of $mathcal{M}^G_1$, and we prove some structure results for those which have bounded curvature. We also relate our results to an algebraic version of collapse.File | Dimensione | Formato | |
---|---|---|---|
Diverging sequences of unit volume invariant metrics with bounded curvature.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
546.5 kB
Formato
Adobe PDF
|
546.5 kB | Adobe PDF | Richiedi una copia |
Diverging sequences of unit volume invariant metrics with bounded curvature.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Solo lettura
Dimensione
458.25 kB
Formato
Adobe PDF
|
458.25 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.