Plant species allocate resources to multiple defensive traits simultaneously, often leading to so-called defence syndromes (i.e. suites of traits that are co-expressed across several species). While reports of ontogenetic variation in plant defences are commonplace, no study to date has tested for ontogenetic shifts in defence syndromes, and we know little about the ecological and evolutionary drivers of variation in plant defence syndromes across ontogeny.We tested for ontogenetic variation in plant defence syndromes by measuring a suite of defensive and nutritional traits on saplings and adult trees of 29 oak (Quercus, Fagaceae) species distributed across Europe, North America, and Asia. In addition, we investigated if these syndromes exhibited a phylogenetic signal to elucidate the nature of their macro-evolutionary variation, whether they were associated with levels of herbivore pressure and climatic conditions, and if any such evolutionary and ecological patterns were contingent on ontogeny.Our analyses revealed three distinct oak defence syndromes: the first included species with high defences, the second species with high defences and low nutrient levels, and the third species with high nutrients and thinner leaves. Interestingly, these defence syndromes remained virtually unchanged across the two ontogenetic stages sampled. In addition, our analyses indicated no evidence for a phylogenetic signal in oak syndromes, a result consistent across ontogenetic stages. Finally, with respect to ecological factors, we found no effect of climatic conditions on defences for either ontogenetic stage, whereas defence syndromes were associated with differing levels of herbivory in adults but not saplings suggesting an association between herbivore pressure and syndrome type that is contingent on ontogeny.Synthesis. Together, these findings indicate that defence syndromes remain remarkably consistent across oak ontogenetic stages, are evolutionarily labile, and while they appear unrelated to climate, they do appear to be associated with herbivory levels in an ontogenetic-dependent manner. Overall, this study builds towards a better understanding of ecological and evolutionary factors underlying multivariate plant defensive phenotypes.

Ontogenetic consistency in oak defence syndromes / Xoaqu??n Moreira; Luis Abdala???Roberts; Andrea Galm??n; Andrew W. Bartlow; Jorge C. Berny???Mier y Teran; Elisa Carrari; Felisa Covelo; Mar??a de la Fuente; Scott Ferrenberg; Nikolaos M. Fyllas; Yasutomo Hoshika; Steven R. Lee; Robert J. Marquis; Masahiro Nakamura; Colleen S. Nell; Mario B. Pesendorfer; Michael A. Steele; Carla V??zquez???Gonz??lez; Shuang Zhang; Sergio Rasmann. - In: JOURNAL OF ECOLOGY. - ISSN 0022-0477. - ELETTRONICO. - 108:(2020), pp. 1822-1834. [10.1111/1365-2745.13376]

Ontogenetic consistency in oak defence syndromes

Elisa Carrari;
2020

Abstract

Plant species allocate resources to multiple defensive traits simultaneously, often leading to so-called defence syndromes (i.e. suites of traits that are co-expressed across several species). While reports of ontogenetic variation in plant defences are commonplace, no study to date has tested for ontogenetic shifts in defence syndromes, and we know little about the ecological and evolutionary drivers of variation in plant defence syndromes across ontogeny.We tested for ontogenetic variation in plant defence syndromes by measuring a suite of defensive and nutritional traits on saplings and adult trees of 29 oak (Quercus, Fagaceae) species distributed across Europe, North America, and Asia. In addition, we investigated if these syndromes exhibited a phylogenetic signal to elucidate the nature of their macro-evolutionary variation, whether they were associated with levels of herbivore pressure and climatic conditions, and if any such evolutionary and ecological patterns were contingent on ontogeny.Our analyses revealed three distinct oak defence syndromes: the first included species with high defences, the second species with high defences and low nutrient levels, and the third species with high nutrients and thinner leaves. Interestingly, these defence syndromes remained virtually unchanged across the two ontogenetic stages sampled. In addition, our analyses indicated no evidence for a phylogenetic signal in oak syndromes, a result consistent across ontogenetic stages. Finally, with respect to ecological factors, we found no effect of climatic conditions on defences for either ontogenetic stage, whereas defence syndromes were associated with differing levels of herbivory in adults but not saplings suggesting an association between herbivore pressure and syndrome type that is contingent on ontogeny.Synthesis. Together, these findings indicate that defence syndromes remain remarkably consistent across oak ontogenetic stages, are evolutionarily labile, and while they appear unrelated to climate, they do appear to be associated with herbivory levels in an ontogenetic-dependent manner. Overall, this study builds towards a better understanding of ecological and evolutionary factors underlying multivariate plant defensive phenotypes.
2020
108
1822
1834
Goal 13: Climate action
Goal 15: Life on land
Xoaqu??n Moreira; Luis Abdala???Roberts; Andrea Galm??n; Andrew W. Bartlow; Jorge C. Berny???Mier y Teran; Elisa Carrari; Felisa Covelo; Mar??a de la ...espandi
File in questo prodotto:
File Dimensione Formato  
Moreira et al 2020.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1282050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact