We tested the independent and interactive effects of nitrogen (N; 0 and 80 kg ha(-1)), phosphorus (P; 0, 40 and 80 kg ha(-1)), and ozone (O-3) application/exposure [ambient concentration (AA), 1.5 x AA and 2.0 x AA] for five consecutive months on biochemical traits of the O-3-sensitive Oxford poplar clone. Plants exposed to O-3 showed visible injury and an alteration of membrane integrity, as confirmed by the malondialdehyde byproduct accumulation (+3 and + 17% under 1.5 x AA and 2.0 x AA conditions, in comparison to AA). This was probably due to O-3-induced oxidative damage, as documented by the production of superoxide anion radical (O-2(.-), +27 and -E 63%, respectively). Ozone per se, independently from the concentrations, induced multiple signals (e.g., alteration of cellular redox state, increase of abscisic acickindole-3-acetic acid ratio and reduction of proline content) that might be part of premature leaf senescence processes. By contrast, nutrient fertilization (both N and P) reduced reactive oxygen species accumulation (as confirmed by the decreased O-2(.-) and hydrogen peroxide content), resulting in enhanced membrane stability. This was probably due to the simultaneous involvement of antioxidant compounds (e.g., carotenoids, ascorbate and glutathione) and osmoprotectants (e.g., proline) that regulate the detoxification processes of coping with oxidative stress by redwing the O-3 sensitivity of Oxford clone. These mitigation effects were effective only under AA and 1.5 x AA conditions. Nitrogen and P supply activated a free radical scavenging system that was not able to delay leaf senescence and mitigate the adverse effects of a general peroxidation due to the highest 03 concentrations. (C) 2018 Elsevier B.V. All rights reserved.

Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone? / Podda, Alessandra; Pisuttu, Claudia; Hoshika, Yasutomo; Pellegrini, Elisa; Carrari, Elisa; Lorenzini, Giacomo; Nali, Cristina; Cotrozzi, Lorenzo; Zhang, Lu; Baraldi, Rita; Neri, Luisa; Paoletti, Elena. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - ELETTRONICO. - 657:(2019), pp. 340-350. [10.1016/j.scitotenv.2018.11.459]

Can nutrient fertilization mitigate the effects of ozone exposure on an ozone-sensitive poplar clone?

Carrari, Elisa;Lorenzini, Giacomo;
2019

Abstract

We tested the independent and interactive effects of nitrogen (N; 0 and 80 kg ha(-1)), phosphorus (P; 0, 40 and 80 kg ha(-1)), and ozone (O-3) application/exposure [ambient concentration (AA), 1.5 x AA and 2.0 x AA] for five consecutive months on biochemical traits of the O-3-sensitive Oxford poplar clone. Plants exposed to O-3 showed visible injury and an alteration of membrane integrity, as confirmed by the malondialdehyde byproduct accumulation (+3 and + 17% under 1.5 x AA and 2.0 x AA conditions, in comparison to AA). This was probably due to O-3-induced oxidative damage, as documented by the production of superoxide anion radical (O-2(.-), +27 and -E 63%, respectively). Ozone per se, independently from the concentrations, induced multiple signals (e.g., alteration of cellular redox state, increase of abscisic acickindole-3-acetic acid ratio and reduction of proline content) that might be part of premature leaf senescence processes. By contrast, nutrient fertilization (both N and P) reduced reactive oxygen species accumulation (as confirmed by the decreased O-2(.-) and hydrogen peroxide content), resulting in enhanced membrane stability. This was probably due to the simultaneous involvement of antioxidant compounds (e.g., carotenoids, ascorbate and glutathione) and osmoprotectants (e.g., proline) that regulate the detoxification processes of coping with oxidative stress by redwing the O-3 sensitivity of Oxford clone. These mitigation effects were effective only under AA and 1.5 x AA conditions. Nitrogen and P supply activated a free radical scavenging system that was not able to delay leaf senescence and mitigate the adverse effects of a general peroxidation due to the highest 03 concentrations. (C) 2018 Elsevier B.V. All rights reserved.
657
340
350
Goal 15: Life on land
Podda, Alessandra; Pisuttu, Claudia; Hoshika, Yasutomo; Pellegrini, Elisa; Carrari, Elisa; Lorenzini, Giacomo; Nali, Cristina; Cotrozzi, Lorenzo; Zhang, Lu; Baraldi, Rita; Neri, Luisa; Paoletti, Elena
File in questo prodotto:
File Dimensione Formato  
Podda et al. 2019.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 771.44 kB
Formato Adobe PDF
771.44 kB Adobe PDF Visualizza/Apri

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1282058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact