Maintaining a genetically diverse dairy cattle popula- tion is critical to preserving adaptability to future breed- ing goals and avoiding declines in fitness. This study characterized the genomic landscape of autozygosity and assessed trends in genetic diversity in 5 breeds of US dairy cattle. We analyzed a sizable genomic data set containing 4,173,679 pedigreed and genotyped ani- mals of the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds. Runs of homozygosity (ROH) of 2 Mb or longer in length were identified in each animal. The within-breed means for number and the combined length of ROH were highest in Jerseys (62.66 ± 8.29 ROH and 426.24 ± 83.40 Mb, respectively; mean ± SD) and lowest in Ayrshires (37.24 ± 8.27 ROH and 265.05 ± 85.00 Mb, respectively). Short ROH were the most abundant, but moderate to large ROH made up the largest proportion of genome autozygosity in all breeds. In addition, we identified ROH islands in each breed. This revealed selection patterns for milk production, productive life, health, and reproduction in most breeds and evidence for parallel selective pressure for loci on chromosome 6 between Ayrshire and Brown Swiss and for loci on chromosome 20 between Holstein and Jersey. We calculated inbreeding coefficients using 3 different approaches, pedigree-based (FPED), marker-based using a genomic relationship matrix (FGRM), and segment- based using ROH (FROH). The average inbreeding coefficient ranged from 0.06 in Ayrshires and Brown Swiss to 0.08 in Jerseys and Holsteins using FPED, from 0.22 in Holsteins to 0.29 in Guernsey and Jerseys using FGRM, and from 0.11 in Ayrshires to 0.17 in Jerseys using FROH. In addition, the effective population size at past generations (5–100 generations ago), the yearly rate of inbreeding, and the effective population size in 3 recent periods (2000–2009, 2010–2014, and 2015–2018) were determined in each breed to ascertain current and historical trends of genetic diversity. We found a historical trend of decreasing effective population size in the last 100 generations in all breeds and breed dif- ferences in the effect of the recent implementation of genomic selection on inbreeding accumulation.

Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle / Emmanuel Lozada-Soto, Francesco Tiezzi, Jicai Jiang, John Cole, Paul VanRaden, Christian Maltecca. - In: JOURNAL OF DAIRY SCIENCE. - ISSN 1525-3198. - ELETTRONICO. - (2022), pp. 1-16. [10.3168/jds.2022-22116]

Genomic characterization of autozygosity and recent inbreeding trends in all major breeds of US dairy cattle

Francesco Tiezzi;
2022

Abstract

Maintaining a genetically diverse dairy cattle popula- tion is critical to preserving adaptability to future breed- ing goals and avoiding declines in fitness. This study characterized the genomic landscape of autozygosity and assessed trends in genetic diversity in 5 breeds of US dairy cattle. We analyzed a sizable genomic data set containing 4,173,679 pedigreed and genotyped ani- mals of the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds. Runs of homozygosity (ROH) of 2 Mb or longer in length were identified in each animal. The within-breed means for number and the combined length of ROH were highest in Jerseys (62.66 ± 8.29 ROH and 426.24 ± 83.40 Mb, respectively; mean ± SD) and lowest in Ayrshires (37.24 ± 8.27 ROH and 265.05 ± 85.00 Mb, respectively). Short ROH were the most abundant, but moderate to large ROH made up the largest proportion of genome autozygosity in all breeds. In addition, we identified ROH islands in each breed. This revealed selection patterns for milk production, productive life, health, and reproduction in most breeds and evidence for parallel selective pressure for loci on chromosome 6 between Ayrshire and Brown Swiss and for loci on chromosome 20 between Holstein and Jersey. We calculated inbreeding coefficients using 3 different approaches, pedigree-based (FPED), marker-based using a genomic relationship matrix (FGRM), and segment- based using ROH (FROH). The average inbreeding coefficient ranged from 0.06 in Ayrshires and Brown Swiss to 0.08 in Jerseys and Holsteins using FPED, from 0.22 in Holsteins to 0.29 in Guernsey and Jerseys using FGRM, and from 0.11 in Ayrshires to 0.17 in Jerseys using FROH. In addition, the effective population size at past generations (5–100 generations ago), the yearly rate of inbreeding, and the effective population size in 3 recent periods (2000–2009, 2010–2014, and 2015–2018) were determined in each breed to ascertain current and historical trends of genetic diversity. We found a historical trend of decreasing effective population size in the last 100 generations in all breeds and breed dif- ferences in the effect of the recent implementation of genomic selection on inbreeding accumulation.
2022
1
16
Emmanuel Lozada-Soto, Francesco Tiezzi, Jicai Jiang, John Cole, Paul VanRaden, Christian Maltecca
File in questo prodotto:
File Dimensione Formato  
Genomic_characterization.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1283053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact