In this paper we study a quantitative isoperimetric inequality in the plane, related to the isoperimetric deficit $d$ and the barycentric asymmetry $L_0$. Our aim is to prove that there exists an absolute constant C such that for every planar (convex or compact and connected) set it holds: $L_0^2\le C d$. This generalizes some results obtained by B. Fuglede 1993 in [12]. For that purpose, we consider a shape optimization problem in which we minimize the ratio $d/L_0^2$both in the class of compact connected sets and in the class of convex sets.
On the quantitative isoperimetric inequality in the plane with the barycentric asymmetry / Bianchini, Chiara; Croce, Gisella. - In: ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE. - ISSN 2036-2145. - STAMPA. - 24:(2023), pp. 2477-2500. [10.2422/2036-2145.202107_014]
On the quantitative isoperimetric inequality in the plane with the barycentric asymmetry
Bianchini, Chiara
;
2023
Abstract
In this paper we study a quantitative isoperimetric inequality in the plane, related to the isoperimetric deficit $d$ and the barycentric asymmetry $L_0$. Our aim is to prove that there exists an absolute constant C such that for every planar (convex or compact and connected) set it holds: $L_0^2\le C d$. This generalizes some results obtained by B. Fuglede 1993 in [12]. For that purpose, we consider a shape optimization problem in which we minimize the ratio $d/L_0^2$both in the class of compact connected sets and in the class of convex sets.File | Dimensione | Formato | |
---|---|---|---|
RevisedVersionMay31-2022.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
368.71 kB
Formato
Adobe PDF
|
368.71 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.