We report the results of an experimental multianalytical characterisation of industrial cristobalite powders, used as raw materials for artificial stone production. Cristobalite is considered a serious threat to human health. The study was carried out through X-ray diffraction (XRD), scanning electron microscopy with energy dispersive microanalysis (SEM/EDS), continuous-wave (cw) and pulse electron paramagnetic resonance (EPR) spectroscopy. Our results point out a sub-micrometric size of the structural coherence in cristobalite, associated with numerous stacking defects. Moreover, the material was found characterised by the presence of superoxide radicals, whose persistence appears conceivably long. Radicals in a material synthesized through a high-temperature treatment were generated during the grinding step in the industrial production of cristobalite. During this process, in fact, both superoxide generation and structural defectivity are induced. Indeed, cristobalite powders already result activated by a radical population, before any kind of process in artificial stone production.
A study of radicals in industrial raw cristobalite powders / Di Benedetto F.; Giaccherini A.; Romanelli M.; Montegrossi G.; Belluso E.; Capella S.; Zoleo A.; Arcangeli G.; Marinaccio A.; Gottardo O.; Capacci F.. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - ELETTRONICO. - 48:(2021), pp. 9.0-9.0. [10.1007/s00269-020-01127-1]
A study of radicals in industrial raw cristobalite powders
Arcangeli G.;
2021
Abstract
We report the results of an experimental multianalytical characterisation of industrial cristobalite powders, used as raw materials for artificial stone production. Cristobalite is considered a serious threat to human health. The study was carried out through X-ray diffraction (XRD), scanning electron microscopy with energy dispersive microanalysis (SEM/EDS), continuous-wave (cw) and pulse electron paramagnetic resonance (EPR) spectroscopy. Our results point out a sub-micrometric size of the structural coherence in cristobalite, associated with numerous stacking defects. Moreover, the material was found characterised by the presence of superoxide radicals, whose persistence appears conceivably long. Radicals in a material synthesized through a high-temperature treatment were generated during the grinding step in the industrial production of cristobalite. During this process, in fact, both superoxide generation and structural defectivity are induced. Indeed, cristobalite powders already result activated by a radical population, before any kind of process in artificial stone production.File | Dimensione | Formato | |
---|---|---|---|
s00269-020-01127-1.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
3.67 MB
Formato
Adobe PDF
|
3.67 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.