In Europe, most of vineyards are managed under rainfed conditions, where water deficit has become increasingly an issue. The flowering-veraison phenophase represents an important period for vine response to water stress, which is known to depend on variety characteristics, soil and climate conditions. In this paper, we have carried out a retrospective analysis for important European wine regions over 1986-2015, with objectives to assess the mean Crop Water Stress Indicator (CWSI) during flowering-veraison phase, and potential Yield Lose Rate (YLR) due to seasonal cumulative water stress. Moreover, we also investigate if advanced flowering-veraison phase can lead to alleviated CWSI under recent-past conditions, thus contributing to reduced YLR. A process-based grapevine model is employed, which has been extensively calibrated for simulating both flowering and veraison stages using location-specific observations representing 10 different varieties. Subsequently, grid-based modelling is implemented with gridded climate and soil datasets and calibrated phenology parameters. The findings suggest wine regions with higher mean CWSI of flowering-veraison phase tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) along with a negligible-to-moderate YLR (<30%), whereas the latter is found to have severe-to-extreme drought (CWSI>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. Advanced flowering-veraison phase over 1986-2015, could have benefited from more spring precipitation and cooler temperatures for wine regions of Italy-Portugal-Spain, leading to reduced mean CWSI and YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent reductions of YLR are also found, possibly due to shifted phase towards a cooler growing-season with reduced evaporative demands. Our study demonstrates flowering-verasion water deficit is critical for potential yield, which can have different impacts between Central and Southern European wine regions. This phase can be advanced under a warmer climate, thus having important implications for European rainfed vineyards. The overall outcome may provide new insights for appropriate viticultural management of seasonal water deficits under climate change.

Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions / Yang, C.; Menz, C; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J. A.. - In: AGRICULTURAL WATER MANAGEMENT. - ISSN 0378-3774. - ELETTRONICO. - 261:(2022), pp. 107349.0-107349.0. [10.1016/j.agwat.2021.107349]

Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions

Leolini, L.;
2022

Abstract

In Europe, most of vineyards are managed under rainfed conditions, where water deficit has become increasingly an issue. The flowering-veraison phenophase represents an important period for vine response to water stress, which is known to depend on variety characteristics, soil and climate conditions. In this paper, we have carried out a retrospective analysis for important European wine regions over 1986-2015, with objectives to assess the mean Crop Water Stress Indicator (CWSI) during flowering-veraison phase, and potential Yield Lose Rate (YLR) due to seasonal cumulative water stress. Moreover, we also investigate if advanced flowering-veraison phase can lead to alleviated CWSI under recent-past conditions, thus contributing to reduced YLR. A process-based grapevine model is employed, which has been extensively calibrated for simulating both flowering and veraison stages using location-specific observations representing 10 different varieties. Subsequently, grid-based modelling is implemented with gridded climate and soil datasets and calibrated phenology parameters. The findings suggest wine regions with higher mean CWSI of flowering-veraison phase tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) along with a negligible-to-moderate YLR (<30%), whereas the latter is found to have severe-to-extreme drought (CWSI>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. Advanced flowering-veraison phase over 1986-2015, could have benefited from more spring precipitation and cooler temperatures for wine regions of Italy-Portugal-Spain, leading to reduced mean CWSI and YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent reductions of YLR are also found, possibly due to shifted phase towards a cooler growing-season with reduced evaporative demands. Our study demonstrates flowering-verasion water deficit is critical for potential yield, which can have different impacts between Central and Southern European wine regions. This phase can be advanced under a warmer climate, thus having important implications for European rainfed vineyards. The overall outcome may provide new insights for appropriate viticultural management of seasonal water deficits under climate change.
2022
261
0
0
Goal 13: Climate action
Yang, C.; Menz, C; Fraga, H.; Costafreda-Aumedes, S.; Leolini, L.; Ramos, M.C.; Molitor, D.; van Leeuwen, C.; Santos, J. A.
File in questo prodotto:
File Dimensione Formato  
Assessing the grapevine crop_Yang et al_AWM_2022.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 8.97 MB
Formato Adobe PDF
8.97 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1284767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact