In this research, we developed an online comprehensive two-dimensional liquid chromatographic (LC × LC) method hyphenated with high-resolution mass spectrometry (HRMS) for the non-targeted identification of poly- and perfluorinated compounds (PFASs) in fire-fighting aqueous-film forming foams (AFFFs). The method exploited the combination of mixed-mode weak anion exchange-reversed phase with a octadecyl stationary phase, separating PFASs according to ionic classes and chain length. To develop and optimize the LC × LC method we used a reference training set of twenty-four anionic PFASs, representing the main classes of compounds occurring in AFFFs and covering a wide range of physicochemical properties. In particular, we investigated different modulation approaches to reduce injection band broadening and breakthrough in the second dimension separation. Active solvent and stationary phase assisted modulations were compared, with the best results obtained with the last approach. In the optimal conditions, the predicted peak capacity corrected for undersampling was higher than three-hundred in a separation space of about 60 min. Subsequently, the developed method was applied to the non-targeted analysis of two AFFF samples for the identification of homologous series of PFASs, in which it was possible to identify up to thirty-nine potential compounds of interest utilizing Kendrick mass defect analysis. Even within the samples, the features considered potential PFAS by mass defect analysis elute in the chromatographic regions discriminating for the ionic group and/or the chain length, thus confirming the applicability of the method presented for the analysis of AFFF mixtures and, to a further extent, of environmental matrices affected by the AFFF.

Development of a comprehensive two-dimensional liquid chromatographic mass spectrometric method for the non-targeted identification of poly- and perfluoroalkyl substances in aqueous film-forming foams / Renai, Lapo; Del Bubba, Massimo; Samanipour, Saer; Stafford, Rebecca; Gargano, Andrea F G. - ELETTRONICO. - 1232:(2022), pp. 0-0. [10.1016/j.aca.2022.340485]

Development of a comprehensive two-dimensional liquid chromatographic mass spectrometric method for the non-targeted identification of poly- and perfluoroalkyl substances in aqueous film-forming foams

Renai, Lapo
;
Del Bubba, Massimo;
2022

Abstract

In this research, we developed an online comprehensive two-dimensional liquid chromatographic (LC × LC) method hyphenated with high-resolution mass spectrometry (HRMS) for the non-targeted identification of poly- and perfluorinated compounds (PFASs) in fire-fighting aqueous-film forming foams (AFFFs). The method exploited the combination of mixed-mode weak anion exchange-reversed phase with a octadecyl stationary phase, separating PFASs according to ionic classes and chain length. To develop and optimize the LC × LC method we used a reference training set of twenty-four anionic PFASs, representing the main classes of compounds occurring in AFFFs and covering a wide range of physicochemical properties. In particular, we investigated different modulation approaches to reduce injection band broadening and breakthrough in the second dimension separation. Active solvent and stationary phase assisted modulations were compared, with the best results obtained with the last approach. In the optimal conditions, the predicted peak capacity corrected for undersampling was higher than three-hundred in a separation space of about 60 min. Subsequently, the developed method was applied to the non-targeted analysis of two AFFF samples for the identification of homologous series of PFASs, in which it was possible to identify up to thirty-nine potential compounds of interest utilizing Kendrick mass defect analysis. Even within the samples, the features considered potential PFAS by mass defect analysis elute in the chromatographic regions discriminating for the ionic group and/or the chain length, thus confirming the applicability of the method presented for the analysis of AFFF mixtures and, to a further extent, of environmental matrices affected by the AFFF.
1232
0
0
Renai, Lapo; Del Bubba, Massimo; Samanipour, Saer; Stafford, Rebecca; Gargano, Andrea F G
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S000326702201056X-main.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 3.77 MB
Formato Adobe PDF
3.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1286069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact