Simple SummaryGenetic rearrangements of the ROS1 gene account for up to 2% of NSCLC patients who sometimes develop brain metastasis, resulting in poor prognosis. This review discusses the tyrosine kinase inhibitor crizotinib plus updates and preliminary results with the newer generation of tyrosine kinase inhibitors, which have been specifically conceived to overcome crizotinib resistance, including brigatinib, cabozantinib, ceritinib, entrectinib, lorlatinib and repotrectinib. After introducing each agent's properties, we provide suggestions on the best approaches to identify resistance mechanisms at an early stage, and we speculate on the most appropriate second-line therapies for patients who reported disease progression following crizotinib administration.The treatment of patients affected by non-small cell lung cancer (NSCLC) has been revolutionised by the discovery of druggable mutations. ROS1 (c-ros oncogene) is one gene with druggable mutations in NSCLC. ROS1 is currently targeted by several specific tyrosine kinase inhibitors (TKIs), but only two of these, crizotinib and entrectinib, have received Food and Drug Administration (FDA) approval. Crizotinib is a low molecular weight, orally available TKI that inhibits ROS1, MET and ALK and is considered the gold standard first-line treatment with demonstrated significant activity for lung cancers harbouring ROS1 gene rearrangements. However, crizotinib resistance often occurs, making the treatment of ROS1-positive lung cancers more challenging. A great effort has been undertaken to identify a new generation or ROS1 inhibitors. In this review, we briefly introduce the biology and role of ROS1 in lung cancer and discuss the underlying acquired mechanisms of resistance to crizotinib and the promising new agents able to overcome resistance mechanisms and offer alternative efficient therapies.

Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies / D'Angelo, Alberto; Sobhani, Navid; Chapman, Robert; Bagby, Stefan; Bortoletti, Carlotta; Traversini, Mirko; Ferrari, Katia; Voltolini, Luca; Darlow, Jacob; Roviello, Giandomenico. - In: CANCERS. - ISSN 2072-6694. - ELETTRONICO. - 12:(2020), pp. 1-18. [10.3390/cancers12113293]

Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies

Traversini, Mirko;Ferrari, Katia;Voltolini, Luca;Roviello, Giandomenico
2020

Abstract

Simple SummaryGenetic rearrangements of the ROS1 gene account for up to 2% of NSCLC patients who sometimes develop brain metastasis, resulting in poor prognosis. This review discusses the tyrosine kinase inhibitor crizotinib plus updates and preliminary results with the newer generation of tyrosine kinase inhibitors, which have been specifically conceived to overcome crizotinib resistance, including brigatinib, cabozantinib, ceritinib, entrectinib, lorlatinib and repotrectinib. After introducing each agent's properties, we provide suggestions on the best approaches to identify resistance mechanisms at an early stage, and we speculate on the most appropriate second-line therapies for patients who reported disease progression following crizotinib administration.The treatment of patients affected by non-small cell lung cancer (NSCLC) has been revolutionised by the discovery of druggable mutations. ROS1 (c-ros oncogene) is one gene with druggable mutations in NSCLC. ROS1 is currently targeted by several specific tyrosine kinase inhibitors (TKIs), but only two of these, crizotinib and entrectinib, have received Food and Drug Administration (FDA) approval. Crizotinib is a low molecular weight, orally available TKI that inhibits ROS1, MET and ALK and is considered the gold standard first-line treatment with demonstrated significant activity for lung cancers harbouring ROS1 gene rearrangements. However, crizotinib resistance often occurs, making the treatment of ROS1-positive lung cancers more challenging. A great effort has been undertaken to identify a new generation or ROS1 inhibitors. In this review, we briefly introduce the biology and role of ROS1 in lung cancer and discuss the underlying acquired mechanisms of resistance to crizotinib and the promising new agents able to overcome resistance mechanisms and offer alternative efficient therapies.
2020
12
1
18
D'Angelo, Alberto; Sobhani, Navid; Chapman, Robert; Bagby, Stefan; Bortoletti, Carlotta; Traversini, Mirko; Ferrari, Katia; Voltolini, Luca; Darlow, Jacob; Roviello, Giandomenico
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1286726
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 43
social impact