The decline of pollinators and the consequent decay of pollination services call for the establishment of monitoring schemes for several groups of pollinators. For Anthophila (Hymenoptera), the design of monitoring schemes is still under development. The main difficulties lie in combining a reliable but field-feasible taxonomic identification with the collection of informative data about the consistency and functional role of pollinator populations. Here we report on the application of the Italian monitoring scheme for pollinators recently defined by ISPRA and the University of Turin in agreement with the European Pollinators Monitoring Scheme on the small island of Giannutri (Tuscany), a simplified insular ecosystem with a virtually unknown pollinator community. This island has recently experienced a drastic change in its bee community, as since 2018 honey bee (Apis mellifera L.) hives are regularly moved every year to the island for breeding purposes. In the spring 2021 we established six 250 m long fixed transects and performed a total of 48 surveys (8 for each transect), recording more than 2300 observations of 9 Anthophila bee taxa and the flowers they visited. By using generalised additive mixed models, we showed that the monitoring protocol has a good potential for monitoring Anthophila, as we could verify several expected relationships between Anthophila abundance and abiotic factors (season, hour of the day, distance from the apiary) and biotic factors (abundance of flower resources). More importantly, we verified that A. mellifera represents by far the most frequent Anthophila taxon. Our data do not show evidence for spatial partition between A. mellifera and the other most frequent taxa (Bombus terrestris L. and Anthophora spp.). The visit network based on transect observations also showed that these taxa largely overlapped in terms of visits to flower resources. Overall, our data showed that the monitoring protocol allows gathering informative data about Anthophila taxa abundance, interactions and flower-visits. Moreover, the spatial and flower-visit overlap suggest potential for competition between honey bees and wild pollinators, with a potential consequent resource depletion for the latter. While this hypothesis could only be assessed by a long-term monitoring and ad hoc honey bee removal experiments, our data show that this basic monitoring protocol produces rapid and valuable information about Anthophila community and dynamics. © 2022, Department of Agricultural and Food Sciences. All rights reserved.

Simple and informative: applying a basic Anthophila monitoring scheme in a simplified insular ecosystem / Alessandro Cini, Fulvia BENETELLO, Marco Bonifacino, Vania SALVATI, Elisa MONTERASTELLI, Lorenzo Pasquali, Ginevra SISTRI, Francesca Romana Dani, Leonardo Dapporto;. - In: BULLETIN OF INSECTOLOGY. - ISSN 2283-0332. - ELETTRONICO. - 75:(2022), pp. 83-95.

Simple and informative: applying a basic Anthophila monitoring scheme in a simplified insular ecosystem

Fulvia BENETELLO;Marco Bonifacino;Vania SALVATI;Elisa MONTERASTELLI;Lorenzo Pasquali;Ginevra SISTRI;Francesca Romana Dani;Leonardo Dapporto
2022

Abstract

The decline of pollinators and the consequent decay of pollination services call for the establishment of monitoring schemes for several groups of pollinators. For Anthophila (Hymenoptera), the design of monitoring schemes is still under development. The main difficulties lie in combining a reliable but field-feasible taxonomic identification with the collection of informative data about the consistency and functional role of pollinator populations. Here we report on the application of the Italian monitoring scheme for pollinators recently defined by ISPRA and the University of Turin in agreement with the European Pollinators Monitoring Scheme on the small island of Giannutri (Tuscany), a simplified insular ecosystem with a virtually unknown pollinator community. This island has recently experienced a drastic change in its bee community, as since 2018 honey bee (Apis mellifera L.) hives are regularly moved every year to the island for breeding purposes. In the spring 2021 we established six 250 m long fixed transects and performed a total of 48 surveys (8 for each transect), recording more than 2300 observations of 9 Anthophila bee taxa and the flowers they visited. By using generalised additive mixed models, we showed that the monitoring protocol has a good potential for monitoring Anthophila, as we could verify several expected relationships between Anthophila abundance and abiotic factors (season, hour of the day, distance from the apiary) and biotic factors (abundance of flower resources). More importantly, we verified that A. mellifera represents by far the most frequent Anthophila taxon. Our data do not show evidence for spatial partition between A. mellifera and the other most frequent taxa (Bombus terrestris L. and Anthophora spp.). The visit network based on transect observations also showed that these taxa largely overlapped in terms of visits to flower resources. Overall, our data showed that the monitoring protocol allows gathering informative data about Anthophila taxa abundance, interactions and flower-visits. Moreover, the spatial and flower-visit overlap suggest potential for competition between honey bees and wild pollinators, with a potential consequent resource depletion for the latter. While this hypothesis could only be assessed by a long-term monitoring and ad hoc honey bee removal experiments, our data show that this basic monitoring protocol produces rapid and valuable information about Anthophila community and dynamics. © 2022, Department of Agricultural and Food Sciences. All rights reserved.
2022
75
83
95
Alessandro Cini, Fulvia BENETELLO, Marco Bonifacino, Vania SALVATI, Elisa MONTERASTELLI, Lorenzo Pasquali, Ginevra SISTRI, Francesca Romana Dani, Leo...espandi
File in questo prodotto:
File Dimensione Formato  
Cini et al 2022 Bulletin of Insectology.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1287819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact