The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed this information to variance component estimation and phenotypic prediction in swine.

Exploring methods to summarize gut microbiota composition for microbiability estimation and phenotypic prediction in swine / Yuqing He, Francesco Tiezzi, Jicai Jiang, Jeremy Howard, Yijian Huang, Kent Gray, Jung-Woo Choi, Christian Maltecca. - In: JOURNAL OF ANIMAL SCIENCE. - ISSN 1525-3163. - ELETTRONICO. - 100:(2022), pp. 1-14. [10.1093/jas/skac231]

Exploring methods to summarize gut microbiota composition for microbiability estimation and phenotypic prediction in swine.

Francesco Tiezzi;
2022

Abstract

The microbial composition resemblance among individuals in a group can be summarized in a square covariance matrix and fitted in linear models. We investigated eight approaches to create the matrix that quantified the resemblance between animals based on the gut microbiota composition. We aimed to compare the performance of different methods in estimating trait microbiability and predicting growth and body composition traits in three pig breeds. This study included 651 purebred boars from either breed: Duroc (n = 205), Landrace (n = 226), and Large White (n = 220). Growth and body composition traits, including body weight (BW), ultrasound backfat thickness (BF), ultrasound loin depth (LD), and ultrasound intramuscular fat (IMF) content, were measured on live animals at the market weight (156 ± 2.5 d of age). Rectal swabs were taken from each animal at 158 ± 4 d of age and subjected to 16S rRNA gene sequencing. Eight methods were used to create the microbial similarity matrices, including 4 kernel functions (Linear Kernel, LK; Polynomial Kernel, PK; Gaussian Kernel, GK; Arc-cosine Kernel with one hidden layer, AK1), 2 dissimilarity methods (Bray-Curtis, BC; Jaccard, JA), and 2 ordination methods (Metric Multidimensional Scaling, MDS; Detrended Correspondence analysis, DCA). Based on the matrix used, microbiability estimates ranged from 0.07 to 0.21 and 0.12 to 0.53 for Duroc, 0.03 to 0.21 and 0.05 to 0.44 for Landrace, and 0.02 to 0.24 and 0.05 to 0.52 for Large White pigs averaged over traits in the model with sire, pen, and microbiome, and model with the only microbiome, respectively. The GK, JA, BC, and AK1 obtained greater microbiability estimates than the remaining methods across traits and breeds. Predictions were made within each breed group using four-fold cross-validation based on the relatedness of sires in each breed group. The prediction accuracy ranged from 0.03 to 0.18 for BW, 0.08 to 0.31 for BF, 0.21 to 0.48 for LD, and 0.04 to 0.16 for IMF when averaged across breeds. The BC, MDS, LK, and JA achieved better accuracy than other methods in most predictions. Overall, the PK and DCA exhibited the worst performance compared to other microbiability estimation and prediction methods. The current study shows how alternative approaches summarized the resemblance of gut microbiota composition among animals and contributed this information to variance component estimation and phenotypic prediction in swine.
2022
100
1
14
Yuqing He, Francesco Tiezzi, Jicai Jiang, Jeremy Howard, Yijian Huang, Kent Gray, Jung-Woo Choi, Christian Maltecca
File in questo prodotto:
File Dimensione Formato  
he2022jas.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1289204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact