Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order 4 and (up to coverings) they can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.

Infinite families of homogeneous Bismut Ricci flat manifolds / Fabio Podesta'; Alberto Raffero. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 1793-6683. - STAMPA. - 26:(2024), pp. 2250075.00-2250075.00. [10.1142/S0219199722500754]

Infinite families of homogeneous Bismut Ricci flat manifolds

Fabio Podesta'
;
2024

Abstract

Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order 4 and (up to coverings) they can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.
2024
26
00
00
Fabio Podesta'; Alberto Raffero
File in questo prodotto:
File Dimensione Formato  
BRF2.pdf

accesso aperto

Tipologia: Preprint (Submitted version)
Licenza: Tutti i diritti riservati
Dimensione 211.82 kB
Formato Adobe PDF
211.82 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1290244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact