Transformation optics is a powerful tool allowing remapping a generic domain into another yet maintaining a correspondence of the solution of Maxwell's equations within the two domains. Transformation optics has been used in the past to conveniently solve for modes in a generic waveguide by transforming its cross-section into a circular one. Such a transformation needs particular care in enforcing boundary conditions in the transformed, circular, domain. In this paper, a theoretical treatment of boundary conditions is presented, allowing for an accurate computation of all field components in a generic waveguide.

Considerations on boundary conditions in transformation optics for complete field computation in generic waveguides / Gentili G.G.; Giannetti G.; Pelosi G.; Selleri S.. - In: MICROWAVE AND OPTICAL TECHNOLOGY LETTERS. - ISSN 0895-2477. - ELETTRONICO. - 65:(2023), pp. 1.373-1.378. [10.1002/mop.33493]

Considerations on boundary conditions in transformation optics for complete field computation in generic waveguides

Gentili G. G.;Giannetti G.;Pelosi G.;Selleri S.
2023

Abstract

Transformation optics is a powerful tool allowing remapping a generic domain into another yet maintaining a correspondence of the solution of Maxwell's equations within the two domains. Transformation optics has been used in the past to conveniently solve for modes in a generic waveguide by transforming its cross-section into a circular one. Such a transformation needs particular care in enforcing boundary conditions in the transformed, circular, domain. In this paper, a theoretical treatment of boundary conditions is presented, allowing for an accurate computation of all field components in a generic waveguide.
2023
65
373
378
Gentili G.G.; Giannetti G.; Pelosi G.; Selleri S.
File in questo prodotto:
File Dimensione Formato  
MOTL - 2022 - GiannettiGentili -preprint.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1291040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact