We show that the character table of a finite group G determines whether a Sylow 2-subgroup of G is generated by 2 elements, in terms of the Galois action on characters. Our proof of this result requires the use of the Classification of Finite Simple Groups and provides new evidence for the so-far elusive Alperin–McKay–Navarro conjecture.
Characters and Generation of Sylow 2-Subgroups / Navarro G.; Rizo N.; schaeffer Fry A.A.; Vallejo C.. - In: REPRESENTATION THEORY. - ISSN 1088-4165. - ELETTRONICO. - 25:(2021), pp. 142-165. [10.1090/ert/555]
Characters and Generation of Sylow 2-Subgroups
Vallejo C.
2021
Abstract
We show that the character table of a finite group G determines whether a Sylow 2-subgroup of G is generated by 2 elements, in terms of the Galois action on characters. Our proof of this result requires the use of the Classification of Finite Simple Groups and provides new evidence for the so-far elusive Alperin–McKay–Navarro conjecture.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
NRSV21.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
376.32 kB
Formato
Adobe PDF
|
376.32 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



