The investigation of the Hamiltonian dynamical counterpart of phase transi- tions, combined with the Riemannian geometrization of Hamiltonian dynamics, has led to a preliminary formulation of a differential-topological theory of phase transitions. In fact, in correspondence of a phase transition there are peculiar geometrical changes of the mechanical manifolds that are found to stem from changes of their topology. These findings, together with two theorems, have suggested that a topological theory of phase transitions can be formulated to go beyond the limits of the existing theories. Among other advantages, the new theory applies to phase transitions in small N systems (that is, at nanoscopic and mesoscopic scales), and in the absence of symmetry-breaking. However, the preliminary version of the theory was incomplete and still falsifiable by counterexamples. The present work provides a relevant leap forward leading to an accomplished development of the topological theory of phase transitions paving the way to further developments and applications of the theory that can be no longer hampered.

Topological theory of phase transitions / Matteo Gori, Roberto Franzosi, Marco Pettini, Giulio Pettini. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - ELETTRONICO. - 55:(2022), pp. 375002.1-375002.34. [10.1088/1751-8121/ac7f09]

Topological theory of phase transitions

Roberto Franzosi
Membro del Collaboration Group
;
Giulio Pettini
Membro del Collaboration Group
2022

Abstract

The investigation of the Hamiltonian dynamical counterpart of phase transi- tions, combined with the Riemannian geometrization of Hamiltonian dynamics, has led to a preliminary formulation of a differential-topological theory of phase transitions. In fact, in correspondence of a phase transition there are peculiar geometrical changes of the mechanical manifolds that are found to stem from changes of their topology. These findings, together with two theorems, have suggested that a topological theory of phase transitions can be formulated to go beyond the limits of the existing theories. Among other advantages, the new theory applies to phase transitions in small N systems (that is, at nanoscopic and mesoscopic scales), and in the absence of symmetry-breaking. However, the preliminary version of the theory was incomplete and still falsifiable by counterexamples. The present work provides a relevant leap forward leading to an accomplished development of the topological theory of phase transitions paving the way to further developments and applications of the theory that can be no longer hampered.
2022
55
1
34
Matteo Gori, Roberto Franzosi, Marco Pettini, Giulio Pettini
File in questo prodotto:
File Dimensione Formato  
Gori_2022_J._Phys._A%3A_Math._Theor._55_375002.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1292899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact