Plasmonic particles such as gold nanorods (GNRs) are showing themselves as powerful contrast agents for important applications such as photoacoustic imaging and photothermal ablation of cancer. However, their unique photothermal conversion efficiency can turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. The processes of prefusion and remodeling of GNRs under illumination with optical pulses of typical duration of the order of a few ns will be studied in depth. A retrospective classification of these approaches will be undertaken according to often implicit principles, such as: constraining the initial shape, speeding up their thermal coupling with the environment by lowering their thermal resistance at the interface, or redistributing the incoming energy among several particles. Advantages and disadvantages and contexts of practical interest in which one solution may be more appropriate than the other will be discussed. Stabilization of the optical properties of anisotropic plasmonic particles by thermal heating and laser irradiation is an important issue in many biomedical applications. The effect that small thiols have on the thermal photostability of gold nanorods will be addressed. The nanoparticles were treated with mixtures of poly-ethylene-glycol thiolate (PEG-SH) and methyl-benzene-thiol (MBT) with molar ratios ranging from 0 (for the case of pure PEG) to 20, and then incubated in an oven. under sub-boiling conditions. Small thiols have been found to greatly improve the thermal stability of GNRs. For example, after 1 hour at 90 °C the samples with pure PEG lost more than 70% of the optical absorbance in their initial peak position, while the particles covered with a dense layer of MBT remained almost unchanged. It is possible to attribute this effect to a modulation of the activation barrier for the superficial diffusion of the gold atoms. Furthermore, we addressed the translation of this effect on the photostability of irradiated gold nanorods under conditions of interest for photoacoustic imaging and it was found that small thiols delay the damage thresholds by up to a factor of 2. In this work of thesis also describes the effect of the thermal resistance at the gold-water interface (Kapitza resistance) on the photoacoustic conversion performance of gold nanorods. The results indicate possible strategies for optimizing plasmonic particles as contrast agents for imaging, or even as transducers for biosensors. An effective approach is also suggested to modulate the Kapitza resistance by including features not yet well studied such as roughness or the presence of adsorbates. Following this idea, a rough variant of gold nanorods was synthesized by galvanic deposition and replacement of a silver shell, where roughness provides photoacoustic signals approximately 70% higher and damage thresholds of 120%. Furthermore, the particles were coated with a protein crown, which brings about a decrease in photoacoustic signals as the thickness of the shell increases; this could inspire new solutions for biosensors based on a photoacoustic transduction mechanism. Both of these results are consistent with effective modulation of Kapitza resistance, which can decrease with roughening, due to an increase in specific surface area, and can increase with the introduction of a protein coating (which can act as insulation thermal). Hybrid materials consisting of core/shell Au/Ag nanorods have also been developed, included in porous biomimetic phantoms (scaffolds) of chitosan/polyvinyl alcohol (chitosan/PVA) for applications in tissue engineering and wound healing. The combination of Au and Ag in a single construct provides synergistic opportunities for optical activation of functions such as near-infrared laser tissue welding and remote interrogation for the acquisition of prognostically relevant parameters in monitoring wound healing. In particular, the bimetallic component ensures improved optical tunability, shelf life and photothermal stability, acts as a reservoir for germicidal silver cations. At the same time, the polymer blend is ideal for bonding to connective tissue following photothermal activation and for supporting manufacturing processes that provide high porosity, such as electro-spinning, thus setting all the conditions for cell repopulation and antimicrobial protection. In summary, in this work, the optimization of an important system such as GNRs for complementary applications in different biomedical fields has been addressed; their stability and photoacoustic conversion efficiency have been optimized for use as contrast agents optical, developing functional coatings with small organic molecules or with metal porous layers. Finally, the integration of Au/Ag bimetallic nanorods into hybrid scaffolds for tissue engineering was evaluated, exploiting both the photothermal conversion efficiency and the optical sensitivity to oxidative stress conditions, in order to activate processes and monitor parameters of interest in scope of wound healing.

Biomimetic Systems containing Smooth and Rough Goldnanorods for Biomedical Sensing via Photoacoustic Stimulation / Alessio Milanesi, Moreno Lelli, Giada Magni, Claudia Borri, Fulvio Ratto, Sonia Centi, Lucia Cavigli, Roberto Pini, Boris Khlebtsov. - In: ELSEVIER. - ISSN 0922-3444. - ELETTRONICO. - SSRN eJournal (Social Science Research Network Electronic Journal):(2022), pp. 0-0.

Biomimetic Systems containing Smooth and Rough Goldnanorods for Biomedical Sensing via Photoacoustic Stimulation

Alessio Milanesi
;
Moreno Lelli;Giada Magni;Claudia Borri;Fulvio Ratto;Sonia Centi;Lucia Cavigli;Roberto Pini;
2022

Abstract

Plasmonic particles such as gold nanorods (GNRs) are showing themselves as powerful contrast agents for important applications such as photoacoustic imaging and photothermal ablation of cancer. However, their unique photothermal conversion efficiency can turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. The processes of prefusion and remodeling of GNRs under illumination with optical pulses of typical duration of the order of a few ns will be studied in depth. A retrospective classification of these approaches will be undertaken according to often implicit principles, such as: constraining the initial shape, speeding up their thermal coupling with the environment by lowering their thermal resistance at the interface, or redistributing the incoming energy among several particles. Advantages and disadvantages and contexts of practical interest in which one solution may be more appropriate than the other will be discussed. Stabilization of the optical properties of anisotropic plasmonic particles by thermal heating and laser irradiation is an important issue in many biomedical applications. The effect that small thiols have on the thermal photostability of gold nanorods will be addressed. The nanoparticles were treated with mixtures of poly-ethylene-glycol thiolate (PEG-SH) and methyl-benzene-thiol (MBT) with molar ratios ranging from 0 (for the case of pure PEG) to 20, and then incubated in an oven. under sub-boiling conditions. Small thiols have been found to greatly improve the thermal stability of GNRs. For example, after 1 hour at 90 °C the samples with pure PEG lost more than 70% of the optical absorbance in their initial peak position, while the particles covered with a dense layer of MBT remained almost unchanged. It is possible to attribute this effect to a modulation of the activation barrier for the superficial diffusion of the gold atoms. Furthermore, we addressed the translation of this effect on the photostability of irradiated gold nanorods under conditions of interest for photoacoustic imaging and it was found that small thiols delay the damage thresholds by up to a factor of 2. In this work of thesis also describes the effect of the thermal resistance at the gold-water interface (Kapitza resistance) on the photoacoustic conversion performance of gold nanorods. The results indicate possible strategies for optimizing plasmonic particles as contrast agents for imaging, or even as transducers for biosensors. An effective approach is also suggested to modulate the Kapitza resistance by including features not yet well studied such as roughness or the presence of adsorbates. Following this idea, a rough variant of gold nanorods was synthesized by galvanic deposition and replacement of a silver shell, where roughness provides photoacoustic signals approximately 70% higher and damage thresholds of 120%. Furthermore, the particles were coated with a protein crown, which brings about a decrease in photoacoustic signals as the thickness of the shell increases; this could inspire new solutions for biosensors based on a photoacoustic transduction mechanism. Both of these results are consistent with effective modulation of Kapitza resistance, which can decrease with roughening, due to an increase in specific surface area, and can increase with the introduction of a protein coating (which can act as insulation thermal). Hybrid materials consisting of core/shell Au/Ag nanorods have also been developed, included in porous biomimetic phantoms (scaffolds) of chitosan/polyvinyl alcohol (chitosan/PVA) for applications in tissue engineering and wound healing. The combination of Au and Ag in a single construct provides synergistic opportunities for optical activation of functions such as near-infrared laser tissue welding and remote interrogation for the acquisition of prognostically relevant parameters in monitoring wound healing. In particular, the bimetallic component ensures improved optical tunability, shelf life and photothermal stability, acts as a reservoir for germicidal silver cations. At the same time, the polymer blend is ideal for bonding to connective tissue following photothermal activation and for supporting manufacturing processes that provide high porosity, such as electro-spinning, thus setting all the conditions for cell repopulation and antimicrobial protection. In summary, in this work, the optimization of an important system such as GNRs for complementary applications in different biomedical fields has been addressed; their stability and photoacoustic conversion efficiency have been optimized for use as contrast agents optical, developing functional coatings with small organic molecules or with metal porous layers. Finally, the integration of Au/Ag bimetallic nanorods into hybrid scaffolds for tissue engineering was evaluated, exploiting both the photothermal conversion efficiency and the optical sensitivity to oxidative stress conditions, in order to activate processes and monitor parameters of interest in scope of wound healing.
2022
Goal 3: Good health and well-being
Goal 8: Decent work and economic growth
Goal 9: Industry, Innovation, and Infrastructure
Alessio Milanesi, Moreno Lelli, Giada Magni, Claudia Borri, Fulvio Ratto, Sonia Centi, Lucia Cavigli, Roberto Pini, Boris Khlebtsov
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1294125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact