We study the geometric-differential properties of a wide class of closed subgroups of U_n endowed with a natural bi-invariant metric. For each of these groups, we explicitly express the distance function, the diameter, and, above all, we parametrize the set of minimizing geodesic segments with arbitrary endpoints P_0 and P_1 by means of the set of generalized principal logarithms of P_0*P_1 in the Lie algebra of the group. We prove that this last set is a non-empty disjoint union of a finite number of compact submanifolds of u_n diffeomorphic to suitable (and explicitly determined) homogeneous spaces.

Generalized principal logarithms and Riemannian properties of a class of subgroups of U_n endowed with the Frobenius bi-invariant metric / Donato Pertici; Alberto Dolcetti. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - STAMPA. - ........:(2024), pp. 1-25. [10.1007/s11565-024-00561-1]

Generalized principal logarithms and Riemannian properties of a class of subgroups of U_n endowed with the Frobenius bi-invariant metric

Donato Pertici;Alberto Dolcetti
2024

Abstract

We study the geometric-differential properties of a wide class of closed subgroups of U_n endowed with a natural bi-invariant metric. For each of these groups, we explicitly express the distance function, the diameter, and, above all, we parametrize the set of minimizing geodesic segments with arbitrary endpoints P_0 and P_1 by means of the set of generalized principal logarithms of P_0*P_1 in the Lie algebra of the group. We prove that this last set is a non-empty disjoint union of a finite number of compact submanifolds of u_n diffeomorphic to suitable (and explicitly determined) homogeneous spaces.
2024
........
1
25
Donato Pertici; Alberto Dolcetti
File in questo prodotto:
File Dimensione Formato  
Corrected_Proofs_Versione_Finale_11565_2024_561_Author.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 511.39 kB
Formato Adobe PDF
511.39 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1294619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact