Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

Optical excitations dynamics at hetero-interfaces fullerene/quantum dots / Righetto M.; Privitera A.; Franco L.; Bozio R.. - ELETTRONICO. - 10363:(2017), pp. 53-60. (Intervento presentato al convegno Organic, Hybrid, and Perovskite Photovoltaics XVIII 2017) [10.1117/12.2273369].

Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

Privitera A.;
2017

Abstract

Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.
2017
10363
Organic, Hybrid, and Perovskite Photovoltaics XVIII 2017
Righetto M.; Privitera A.; Franco L.; Bozio R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1295857
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact