Context. SMSS J160540.18−144323.1 is the carbon-enhanced metal-poor (CEMP) star with the lowest iron abundance ever measured, [Fe/H] = −6.2, which was first reported with the SkyMapper telescope. The carbon abundance is A(C) ≈ 6.1 in the low-C band, as the majority of the stars in this metallicity range. Yet, constraining the isotopic ratio of key species, such as carbon, sheds light on the properties and origin of these elusive stars. Aims. We performed high-resolution observations of SMSS 1605−1443 with the ESPRESSO spectrograph to look for variations in the radial velocity (vrad ) with time. These data have been combined with older MIKE and UVES archival observations to enlarge the temporal baseline. The 12C/13C isotopic ratio is also studied to explore the possibility of mass transfer from a binary companion. Methods. A cross-correlation function against a natural template was applied to detect vrad variability and a spectral synthesis technique was used to derive 12C/13C in the stellar atmosphere. Results. We confirm previous indications of binarity in SMSS 1605−1443 and measured a lower limit 12 C/13 C> 60 at more than a 3 σ confidence level, proving that this system is chemically unmixed and that no mass transfer from the unseen companion has happened so far. Thus, we confirm the CEMP-no nature of SMSS 1605−1443 and show that the pristine chemical composition of the cloud from which it formed is currently imprinted in its stellar atmosphere free of contamination.

The pristine nature of SMSS 1605−1443 revealed by ESPRESSO / Aguado, D. S.; Caffau, E.; Molaro, P.; Allende Prieto, C.; Bonifacio, P.; González Hernández, J. I.; Rebolo, R.; Salvadori, S.; Zapatero Osorio, M. R.; Cristiani, S.; Pepe, F.; Santos, N. C.; Cupani, G.; Di Marcantonio, P.; D’Odorico, V.; Lovis, C.; Nunes, N. J.; Martins, C. J. A. P.; Milakovi, D.; Rodrigues, J.; Schmidt, T. M.; Sozzetti, A.; Suárez Mascareño, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - STAMPA. - 669:(2023), pp. L4-L9. [10.1051/0004-6361/202245392]

The pristine nature of SMSS 1605−1443 revealed by ESPRESSO

Salvadori, S.;
2023

Abstract

Context. SMSS J160540.18−144323.1 is the carbon-enhanced metal-poor (CEMP) star with the lowest iron abundance ever measured, [Fe/H] = −6.2, which was first reported with the SkyMapper telescope. The carbon abundance is A(C) ≈ 6.1 in the low-C band, as the majority of the stars in this metallicity range. Yet, constraining the isotopic ratio of key species, such as carbon, sheds light on the properties and origin of these elusive stars. Aims. We performed high-resolution observations of SMSS 1605−1443 with the ESPRESSO spectrograph to look for variations in the radial velocity (vrad ) with time. These data have been combined with older MIKE and UVES archival observations to enlarge the temporal baseline. The 12C/13C isotopic ratio is also studied to explore the possibility of mass transfer from a binary companion. Methods. A cross-correlation function against a natural template was applied to detect vrad variability and a spectral synthesis technique was used to derive 12C/13C in the stellar atmosphere. Results. We confirm previous indications of binarity in SMSS 1605−1443 and measured a lower limit 12 C/13 C> 60 at more than a 3 σ confidence level, proving that this system is chemically unmixed and that no mass transfer from the unseen companion has happened so far. Thus, we confirm the CEMP-no nature of SMSS 1605−1443 and show that the pristine chemical composition of the cloud from which it formed is currently imprinted in its stellar atmosphere free of contamination.
2023
669
L4
L9
Aguado, D. S.; Caffau, E.; Molaro, P.; Allende Prieto, C.; Bonifacio, P.; González Hernández, J. I.; Rebolo, R.; Salvadori, S.; Zapatero Osorio, M. R....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1295870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact