This paper focuses on an inexact block coordinate method designed for nonsmooth optimization, where each block-subproblem is solved by performing a bounded number of steps of a variable metric proximal–gradient method with linesearch. We improve on the existing analysis for this algorithm in the nonconvex setting, showing that the iterates converge to a stationary point of the objective function even when the proximal operator is computed inexactly, according to an implementable inexactness condition. The result is obtained by introducing an appropriate surrogate function that takes into account the inexact evaluation of the proximal operator, and assuming that such function satisfies the Kurdyka–Łojasiewicz inequality. The proof technique employed here may be applied to other new or existing block coordinate methods suited for the same class of optimization problems.

Analysis of a variable metric block coordinate method under proximal errors / Rebegoldi S.. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - ELETTRONICO. - (2022), pp. 0-0. [10.1007/s11565-022-00456-z]

Analysis of a variable metric block coordinate method under proximal errors

Rebegoldi S.
Membro del Collaboration Group
2022

Abstract

This paper focuses on an inexact block coordinate method designed for nonsmooth optimization, where each block-subproblem is solved by performing a bounded number of steps of a variable metric proximal–gradient method with linesearch. We improve on the existing analysis for this algorithm in the nonconvex setting, showing that the iterates converge to a stationary point of the objective function even when the proximal operator is computed inexactly, according to an implementable inexactness condition. The result is obtained by introducing an appropriate surrogate function that takes into account the inexact evaluation of the proximal operator, and assuming that such function satisfies the Kurdyka–Łojasiewicz inequality. The proof technique employed here may be applied to other new or existing block coordinate methods suited for the same class of optimization problems.
2022
0
0
Goal 9: Industry, Innovation, and Infrastructure
Rebegoldi S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1296064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact