When dealing with craniofacial impairments, restoring the morphological condition is as crucial as restoring the functional ones to avoid psychosocial disabilities for the patient. For this aim, the accurate location of the midsagittal plane is essential for performing reliable symmetry analyses and guiding effective surgery planning. To provide a fully automatic and landmark-independent approach, capable of providing a midsagittal plane for craniofacial skeleton even from anatomical models with high asymmetries, an innovative method, called MaWR-method, was developed by the authors in a previous work. This paper further investigates the MaWR-method by evaluating its capacity to produce a successful outcome even in the worst-case scenario that may be considered in maxillofacial surgery, namely panfacial fractures. In all the test cases considered in this work, the method proved robust and reliable in its original design. It provided a consistent result requiring no user involvement, even when dealing with extreme asymmetries because of extensive and complex fractures.

Can MaWR-Method for Symmetry Plane Detection be Generalized for Complex Panfacial Fractures? / Di Angelo L.; Di Stefano P.; Governi L.; Marzola A.; Volpe Y.. - ELETTRONICO. - (2023), pp. 148-158. (Intervento presentato al convegno International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing, JCM 2022) [10.1007/978-3-031-15928-2_13].

Can MaWR-Method for Symmetry Plane Detection be Generalized for Complex Panfacial Fractures?

Di Angelo L.;Governi L.;Marzola A.
;
Volpe Y.
2023

Abstract

When dealing with craniofacial impairments, restoring the morphological condition is as crucial as restoring the functional ones to avoid psychosocial disabilities for the patient. For this aim, the accurate location of the midsagittal plane is essential for performing reliable symmetry analyses and guiding effective surgery planning. To provide a fully automatic and landmark-independent approach, capable of providing a midsagittal plane for craniofacial skeleton even from anatomical models with high asymmetries, an innovative method, called MaWR-method, was developed by the authors in a previous work. This paper further investigates the MaWR-method by evaluating its capacity to produce a successful outcome even in the worst-case scenario that may be considered in maxillofacial surgery, namely panfacial fractures. In all the test cases considered in this work, the method proved robust and reliable in its original design. It provided a consistent result requiring no user involvement, even when dealing with extreme asymmetries because of extensive and complex fractures.
2023
Lecture Notes in Mechanical Engineering
International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing, JCM 2022
Di Angelo L.; Di Stefano P.; Governi L.; Marzola A.; Volpe Y.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1300039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact