Next-generation networks are expected to handle a wide variety of internet of everything (IoE) services, notably including virtual reality (VR) for smart industrial-oriented applications. VR for industrial environments subtends strict quality of service constraints, requiring sixth-generation terahertz communications to be satisfied. In such an environment, an additional important issue is trying to get high utilization of network and computing resources. This implies identifying efficient access techniques and methodologies to increase bandwidth utilization and enable flows related to services, with different service requirements, to coexist on the same computation node. Towards this goal, this paper addresses the problem of coexistence of the traffic flows related to different services with given delay requirements, on the same computation node arranged to execute flow processing. In such a context, a theoretical comprehensive performance analysis, to the best of the authors’ knowledge, is still missing in the literature. As a consequence, this lack strongly limits the possibility of fully capturing the performance advantages of computation node sharing among different traffic flows, i.e., services. The proposed analysis aims to give a measure of the ability of the system in accomplishing services before the expiration of corresponding deadlines. The integration of martingale bounds within the stochastic network calculus tool is provided, assuming both the first-in–first-out and the earliest deadline first scheduling policies. Finally, the validity of the analysis proposed is confirmed by the tightness emerging from the comparison between analytical predictions and simulation results.

End-to-End Delay Bound Analysis for VR and Industrial IoE Traffic Flows under Different Scheduling Policies in a 6G Network / Benedetta Picano, Romano Fantacci. - In: COMPUTERS. - ISSN 2073-431X. - ELETTRONICO. - (2023), pp. 1-15. [10.3390/computers12030062]

End-to-End Delay Bound Analysis for VR and Industrial IoE Traffic Flows under Different Scheduling Policies in a 6G Network

Benedetta Picano
;
Romano Fantacci
2023

Abstract

Next-generation networks are expected to handle a wide variety of internet of everything (IoE) services, notably including virtual reality (VR) for smart industrial-oriented applications. VR for industrial environments subtends strict quality of service constraints, requiring sixth-generation terahertz communications to be satisfied. In such an environment, an additional important issue is trying to get high utilization of network and computing resources. This implies identifying efficient access techniques and methodologies to increase bandwidth utilization and enable flows related to services, with different service requirements, to coexist on the same computation node. Towards this goal, this paper addresses the problem of coexistence of the traffic flows related to different services with given delay requirements, on the same computation node arranged to execute flow processing. In such a context, a theoretical comprehensive performance analysis, to the best of the authors’ knowledge, is still missing in the literature. As a consequence, this lack strongly limits the possibility of fully capturing the performance advantages of computation node sharing among different traffic flows, i.e., services. The proposed analysis aims to give a measure of the ability of the system in accomplishing services before the expiration of corresponding deadlines. The integration of martingale bounds within the stochastic network calculus tool is provided, assuming both the first-in–first-out and the earliest deadline first scheduling policies. Finally, the validity of the analysis proposed is confirmed by the tightness emerging from the comparison between analytical predictions and simulation results.
2023
1
15
Benedetta Picano, Romano Fantacci
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1301759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact