: Reconfigurable intelligent surfaces (RIS) are considered of paramount importance to improve air-ground and THz communications performance for 6G systems. Recently, RISs were proposed in Physical Layer Security (PLS), as they can (i) improve the secrecy capacity due to the controlled directional reflections' capability of RIS elements and (ii) avoid potential eavesdroppers, redirecting data streams towards the intended users. This paper proposes the integration of a multi-RISs system within a Software Defined Networking (SDN) architecture to provide a specific control layer for secure data flows forwarding. The optimisation problem is properly characterised in terms of an objective function and an equivalent graph theory model is considered to address the optimal solution. Moreover, different heuristics are proposed, trading off complexity and PLS performance, to evaluate the more suitable multi-beam routing strategy. Numerical results are also provided, focusing on a worst case scenario which points out the improvement of the secrecy rate from the increase in the number of eavesdroppers. Furthermore, the security performance is investigated for a specific user mobility pattern in a pedestrian scenario.
Secure Networking with Software-Defined Reconfigurable Intelligent Surfaces / Chiti, Francesco; Degl'Innocenti, Ashley; Pierucci, Laura. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 23:(2023), pp. 0-0. [10.3390/s23052726]
Secure Networking with Software-Defined Reconfigurable Intelligent Surfaces
Chiti, FrancescoMembro del Collaboration Group
;Pierucci, Laura
2023
Abstract
: Reconfigurable intelligent surfaces (RIS) are considered of paramount importance to improve air-ground and THz communications performance for 6G systems. Recently, RISs were proposed in Physical Layer Security (PLS), as they can (i) improve the secrecy capacity due to the controlled directional reflections' capability of RIS elements and (ii) avoid potential eavesdroppers, redirecting data streams towards the intended users. This paper proposes the integration of a multi-RISs system within a Software Defined Networking (SDN) architecture to provide a specific control layer for secure data flows forwarding. The optimisation problem is properly characterised in terms of an objective function and an equivalent graph theory model is considered to address the optimal solution. Moreover, different heuristics are proposed, trading off complexity and PLS performance, to evaluate the more suitable multi-beam routing strategy. Numerical results are also provided, focusing on a worst case scenario which points out the improvement of the secrecy rate from the increase in the number of eavesdroppers. Furthermore, the security performance is investigated for a specific user mobility pattern in a pedestrian scenario.File | Dimensione | Formato | |
---|---|---|---|
sensors-23-02726-v2.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.