We consider a discrete model of planar elasticity where the particles, in the reference configuration, sit on a regular triangular lattice and interact through nearest-neighbor pairwise potentials, with bonds modeled as linearized elastic springs. Within this framework, we introduce plastic slip fields, whose discrete circulation around each tri-angle detects the possible presence of an edge dislocation. We provide a gamma-convergence analysis, as the lattice spacing tends to zero, of the elastic energy induced by edge dislocations in the energy regime corresponding to a finite number of geometrically necessary dislocations.
Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice / R. Alicandro; L. De Luca; G. Lazzaroni; M. Palombaro; M. Ponsiglione. - In: JOURNAL OF NONLINEAR SCIENCE. - ISSN 0938-8974. - ELETTRONICO. - 33:(2023), pp. 33.0-33.0. [10.1007/s00332-023-09888-z]
Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice
R. Alicandro;G. Lazzaroni;M. Palombaro;
2023
Abstract
We consider a discrete model of planar elasticity where the particles, in the reference configuration, sit on a regular triangular lattice and interact through nearest-neighbor pairwise potentials, with bonds modeled as linearized elastic springs. Within this framework, we introduce plastic slip fields, whose discrete circulation around each tri-angle detects the possible presence of an edge dislocation. We provide a gamma-convergence analysis, as the lattice spacing tends to zero, of the elastic energy induced by edge dislocations in the energy regime corresponding to a finite number of geometrically necessary dislocations.File | Dimensione | Formato | |
---|---|---|---|
2023a-Ali-DeL-Laz-Pal-Pon-JNLS-print.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
557.18 kB
Formato
Adobe PDF
|
557.18 kB | Adobe PDF | Richiedi una copia |
ADLPP_final.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
354.48 kB
Formato
Adobe PDF
|
354.48 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.