Syncronizing plant available water with soil nitrogen (N) remains a critical aspect of agronomic management to enhance crop yield, grain quality, farmers' profit, and environmental sustainability. Their interaction is essential expecially in landscapes characterized by a highly spatial and temporal range of pedoclimatic conditions. To support farmers in making more informed decisions, validate dynamic process based crop simulation models have been successfully used to optimize N fertlization. In this study, we aimed to develop a tactical N fertilizer management strategy to increase profitability, improve grain quality and reduce N losses. The SALUS model was tested against measured durum wheat grain yield and grain quality data collected across independent farmers' fields in Tuscany (Italy). The model was then used to optimize N fertilization under different potential plant extractable soil water (PESW) conditions at the second topdressing N fertilization timing. The model was tested against measurements of grain yield and protein concentration at harvest, as well as phenological stage, biomass, and plant N content during the growing season. Simulations were carried out for 30 years of available weather, using different N rates. The simulations allowed the identification of optimal N rates for each PESW condition and soil type concerning economic and environmental sustainability. Results showed higher yield and higher leaching for the silty clay soil (Quercia; QUE) than for the loamy soil (Arbia; ARB). No major differences were predicted for protein content across soils. Profitability and emissions increased as N rate increased. The N fertilization strategy locally adopted by farmers was also analyzed across different PESW conditions at 2nd topdressing fertilization in comparison to other adopted N management strategies (timing of application and fertilization rates). The model showed that the conventional fertilization strategy does not maximize socio-ecological benefits, but was also the lowest among all the strategies tested. The maximum economic benefit for farmers was reached by applying 90 kg N at 1st and 60 kg N at 2nd topdressing fertilization, both in dry (due to sufficient soil water storage in the soil) and wet years. These results provide valuable insights for developing strategies that balance sustainability, resilience, quality, and profitability in wheat crop production in central Italy.

Developing a tactical nitrogen fertilizer management strategy for sustainable wheat production / Fabbri, C; Basso, B; Napoli, M; Dalla Marta, A; Orlandini, S; Martinez-Feria, RA. - In: EUROPEAN JOURNAL OF AGRONOMY. - ISSN 1161-0301. - ELETTRONICO. - 144:(2023), pp. 0-0. [10.1016/j.eja.2023.126746]

Developing a tactical nitrogen fertilizer management strategy for sustainable wheat production

Fabbri, C;Napoli, M
;
Dalla Marta, A;Orlandini, S;
2023

Abstract

Syncronizing plant available water with soil nitrogen (N) remains a critical aspect of agronomic management to enhance crop yield, grain quality, farmers' profit, and environmental sustainability. Their interaction is essential expecially in landscapes characterized by a highly spatial and temporal range of pedoclimatic conditions. To support farmers in making more informed decisions, validate dynamic process based crop simulation models have been successfully used to optimize N fertlization. In this study, we aimed to develop a tactical N fertilizer management strategy to increase profitability, improve grain quality and reduce N losses. The SALUS model was tested against measured durum wheat grain yield and grain quality data collected across independent farmers' fields in Tuscany (Italy). The model was then used to optimize N fertilization under different potential plant extractable soil water (PESW) conditions at the second topdressing N fertilization timing. The model was tested against measurements of grain yield and protein concentration at harvest, as well as phenological stage, biomass, and plant N content during the growing season. Simulations were carried out for 30 years of available weather, using different N rates. The simulations allowed the identification of optimal N rates for each PESW condition and soil type concerning economic and environmental sustainability. Results showed higher yield and higher leaching for the silty clay soil (Quercia; QUE) than for the loamy soil (Arbia; ARB). No major differences were predicted for protein content across soils. Profitability and emissions increased as N rate increased. The N fertilization strategy locally adopted by farmers was also analyzed across different PESW conditions at 2nd topdressing fertilization in comparison to other adopted N management strategies (timing of application and fertilization rates). The model showed that the conventional fertilization strategy does not maximize socio-ecological benefits, but was also the lowest among all the strategies tested. The maximum economic benefit for farmers was reached by applying 90 kg N at 1st and 60 kg N at 2nd topdressing fertilization, both in dry (due to sufficient soil water storage in the soil) and wet years. These results provide valuable insights for developing strategies that balance sustainability, resilience, quality, and profitability in wheat crop production in central Italy.
2023
144
0
0
Goal 12: Responsible consumption and production
Goal 13: Climate action
Fabbri, C; Basso, B; Napoli, M; Dalla Marta, A; Orlandini, S; Martinez-Feria, RA
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S116103012300014X-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1303843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact