BACKGROUNDIn the present study high-brightness light-emitting diodes were used to investigate the influence of different light spectra on garlic discoloration at different humidity levels and temperature. Many processes involved in the discoloration process of garlic/leek during storage under different conditions remain unanswered. For this reason in this study the ability of specific light spectra to enhance the production of desirable pigments has been evaluated in elephant garlic. It is well known that the pigments involved in the discoloration reaction are of great interest because of their potential ability to increase the nutritional value and health benefits of the food.RESULTSIn the present study, we show how the chlorophyll content of the sprout increases directly proportionally to the wavelength of the light tested; green/blue light delays the greening process of garlic young shoots whilst red/infra-red light irradiance conditions increase the greening process at different storage temperatures and humidity. Moreover different lights in the visible spectrum have been observed to stimulate and enhance the outer layer purple coloration.CONCLUSIONThe use of different lights to modulate garlic pigmentation has been demonstrated and, in particular, the utilisation of red/green/blue lights and lower temperature resulted in higher red/pink pigments production supporting the hypothesis that this process involves more than one light to be fully performed and the low temperature is a condition that influences the formation of these products. (c) 2017 Society of Chemical Industry

Effect of different light spectra on the pigmentation of stored elephant garlic / Comparini, Diego; Nguyen, Hieu Th; Ueda, Kota; Moritaka, Kyoshi; Kihara, Toshihiko; Kawano, Tomonori. - In: JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE. - ISSN 0022-5142. - ELETTRONICO. - 98:(2018), pp. 2598-2606. [10.1002/jsfa.8752]

Effect of different light spectra on the pigmentation of stored elephant garlic

Comparini, Diego;
2018

Abstract

BACKGROUNDIn the present study high-brightness light-emitting diodes were used to investigate the influence of different light spectra on garlic discoloration at different humidity levels and temperature. Many processes involved in the discoloration process of garlic/leek during storage under different conditions remain unanswered. For this reason in this study the ability of specific light spectra to enhance the production of desirable pigments has been evaluated in elephant garlic. It is well known that the pigments involved in the discoloration reaction are of great interest because of their potential ability to increase the nutritional value and health benefits of the food.RESULTSIn the present study, we show how the chlorophyll content of the sprout increases directly proportionally to the wavelength of the light tested; green/blue light delays the greening process of garlic young shoots whilst red/infra-red light irradiance conditions increase the greening process at different storage temperatures and humidity. Moreover different lights in the visible spectrum have been observed to stimulate and enhance the outer layer purple coloration.CONCLUSIONThe use of different lights to modulate garlic pigmentation has been demonstrated and, in particular, the utilisation of red/green/blue lights and lower temperature resulted in higher red/pink pigments production supporting the hypothesis that this process involves more than one light to be fully performed and the low temperature is a condition that influences the formation of these products. (c) 2017 Society of Chemical Industry
2018
98
2598
2606
Comparini, Diego; Nguyen, Hieu Th; Ueda, Kota; Moritaka, Kyoshi; Kihara, Toshihiko; Kawano, Tomonori
File in questo prodotto:
File Dimensione Formato  
J Sci Food Agric - 2017 - Comparini - Effect of different light spectra on the pigmentation of stored elephant garlic.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1304004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact