Background: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. Methods: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. Results: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. Discussion: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.

Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countries / Rai, Masna; Stafoggia, Massimo; de'Donato, Francesca; Scortichini, Matteo; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Zhang, Siqi; Katsouyanni, Klea; Samoli, Evangelia; Rao, Shilpa; Lavigne, Eric; Guo, Yuming; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J K; Ryti, Niilo; Pascal, Mathilde; Hashizume, Masahiro; Fook Sheng Ng, Chris; Alahmad, Barrak; Hurtado Diaz, Magali; De la Cruz Valencia, César; Nunes, Baltazar; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Maria Vicedo-Cabrera, Ana; Ragettli, Martina S; Leon Guo, Yue-Liang; Pan, Shih-Chun; Li, Shanshan; Gasparrini, Antonio; Sera, Francesco; Masselot, Pierre; Schwartz, Joel; Zanobetti, Antonella; Bell, Michelle L; Schneider, Alexandra; Breitner, Susanne. - In: ENVIRONMENT INTERNATIONAL. - ISSN 0160-4120. - ELETTRONICO. - 174:(2023), pp. 0-0. [10.1016/j.envint.2023.107825]

Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countries

Sera, Francesco;
2023

Abstract

Background: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. Methods: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. Results: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. Discussion: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.
2023
174
0
0
Goal 3: Good health and well-being
Rai, Masna; Stafoggia, Massimo; de'Donato, Francesca; Scortichini, Matteo; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Zhang, Siqi; Katsouyanni, Kl...espandi
File in questo prodotto:
File Dimensione Formato  
Rai_2023.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1304672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 27
social impact