This article proposes the Shiny app ‘CLC Estimator’ - Congeneric Latent Construct Estimator - to address the problem of estimating latent unidimensional constructs via congeneric approaches. While congeneric approaches provide more rigorous results than suboptimal parallel-based scoring methods, most statistical packages do not provide easy access to congeneric approaches. To address this issue, the CLC Estimator allows social scientists to use congeneric approaches to estimate latent unidimensional constructs smoothly. The present app provides a novel solution to the challenge of limited access to congeneric estimation methods in survey research.

CLC Estimator: A Tool for Latent Construct Estimation via Congeneric Approaches in Survey Research / Marzi, Giacomo; Balzano, Marco; Egidi, Leonardo; Magrini, Alessandro. - In: MULTIVARIATE BEHAVIORAL RESEARCH. - ISSN 0027-3171. - ELETTRONICO. - (2023), pp. 0-0. [10.1080/00273171.2023.2193718]

CLC Estimator: A Tool for Latent Construct Estimation via Congeneric Approaches in Survey Research

Marzi, Giacomo;Magrini, Alessandro
2023

Abstract

This article proposes the Shiny app ‘CLC Estimator’ - Congeneric Latent Construct Estimator - to address the problem of estimating latent unidimensional constructs via congeneric approaches. While congeneric approaches provide more rigorous results than suboptimal parallel-based scoring methods, most statistical packages do not provide easy access to congeneric approaches. To address this issue, the CLC Estimator allows social scientists to use congeneric approaches to estimate latent unidimensional constructs smoothly. The present app provides a novel solution to the challenge of limited access to congeneric estimation methods in survey research.
2023
0
0
Goal 9: Industry, Innovation, and Infrastructure
Marzi, Giacomo; Balzano, Marco; Egidi, Leonardo; Magrini, Alessandro
File in questo prodotto:
File Dimensione Formato  
Mult Behav Res - 2023 - CLC Estimator A Tool for Latent Construct Estimation via Congeneric Approaches in Survey Research.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1305164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact